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Abstract— Specifying robot tasks for low-volume manufac-
turing scenarios is an open problem. The state-of-the-art robotic
systems enable the application of smooth 2D paths to a 3D
surface but assume that these paths are given by the product
engineer. We extend this approach by a novel method for tool-
path specification which produces smooth paths from noisy
demonstrations. The user demonstrates only short patterns
and selects a base path relative to an object in front of the
robot, along which these patterns should be applied. The
representation based on polynomials allows controlling the
grade of the smoothness of the resulting tool-path. We generate
robot trajectories that are parametrized to meet the use-case
specific constraints and adhere to the robot’s kinodynamic
limits. We propose a set of measures to evaluate the quality
of the generated curves and corresponding trajectories with
respect to executability by a robot. The evaluation in simulation
and real-robot experiments showed that the robot is able
to reach up to 15.9% higher constant speed on tool paths
generated by our system compared to unprocessed paths.

Index Terms— Learning from demonstration, Surface ma-
nipulation, Curve synthesis, Path following, Contour detection

I. INTRODUCTION

An important use-case for industrial robots is the surface
manipulation (i.e., tasks where robots modifies the properties
or shape of surfaces) of workpieces such as engraving, spray
painting, milling, grinding, application of sealant or glue, etc.
In many of these tasks, the end-effector is guided along a
3D trajectory that consists of regular patterns, while keeping
constant distance from the manipulated 3D surface, and
following constraints on the speed and orientation of the
end-effector. In mass production, the automation of these
use-cases is standard. For small batch sizes, however, the
effort required using conventional robot programming tools
makes the automation often prohibitively expensive.

There are several key conceptual and technical challenges
which have to be solved in order to enable the creation of
surface manipulation tool-paths. These are to: a) capture and
process motion patterns demonstrated by the user; b) obtain
a baseline path (e.g., from a CAD model, object outline
detection, or interactively defined by a user) and align it to
the workpiece in front of the robot c) synthesize a curve
based on the baseline and a demonstrated pattern that is
suitable for the execution by a robot; and d) generate motion
plans to follow the synthesized curves and parametrize the
trajectories to meet end-effector speed requirements.
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Our approach to the curve synthesis and path generation,
is inspired by computer graphics, where the ability to apply
a given pattern along the selected contour is a standard
problem called non-photorealistic rendering ([1]). These
methods, albeit very inspiring, are not directly applicable to
generate 6D tool paths for robots. They typically produce (i)
raster graphics that are not easily transformed into smooth
3D paths, and (ii) do not consider tool orientations. There
are very few works which deal with the question how to
generate executable 6D paths on the surface of the real
objects from 2D curves. Typically, these consider only planar
tasks [2] or fully defined smooth 2D curves [3] as well as
require knowledge of the object position and 3D model.
To achieve high-quality robot trajectories exploiting task-
specific tolerances on the end-effector pose together with
constraining the Cartesian end-effector velocity we combine
Descartes planner’s global optimization approach [4] with
custom constraints in time-parametrization tool TOPPRA [5].

The main contributions of this paper are:
1) A specification method for complex curves, their ap-

plication to the 3D surface and execution using real
robots while satisfying use-case dependent constraints
on end-effector pose and velocity.

2) A set of measures to evaluate the quality of the
generated curves and corresponding trajectories with
respect to its executablity by a robot.

3) Evaluation of the introduced methods and measures
within an integrated system (see Fig. 1) that includes
user specification of the patterns via custom tool,
semi-automatic definition of the baseline from RGB-D
camera images and adjustment of the resulting curve
via GUI.

Additional materials including code, videos and trial data
are available on the project webpage http://imitrob.

ciirc.cvut.cz/surftask.html.

II. RELATED WORK

Our work is closely related to vision based generation of
robotic trajectories, where vision methods are used to detect
the surface of the object and the corresponding path for the
robot and to robot motion planning and control, as special
robotic planners and controllers have to be utilized to enable
execution of smooth trajectories with custom constraints.
Vision based generation of robotic trajectories. In the real
world, the 3D model of the object and its surface has to be
taken into account. The 3D model can be either modelled
based on the visual detection or loaded directly from CAD
or other mesh library.

http://imitrob.ciirc.cvut.cz/surftask.html
http://imitrob.ciirc.cvut.cz/surftask.html


Fig. 1: Overview of the proposed methods as utilized in the application pipeline. The setup-dependent parts, a) and b), have
blue border, the parts connected to the methods proposed in this paper have red border. The key parts are: a) Obtaining and
aligning a baseline path (contour acquisition in our case), b) Processing of demonstrated patterns (here via demonstration
tool utilizing an HTC Vive tracker), c) An algorithm to apply user-defined motion patterns along the baseline, d) A method
for applying 2D paths on object surface to generate tool-paths, and e) A robot motion planner that takes a tool path and
process-specific constraints.

In [6], the system for drawing pictures using a differential
drive robot is described. They approximate edges detected
by Canny edge detection with cubic B-spline. Their system
has smaller state-space and is confined to the ground surface,
whereas our 7-axis manipulator works on objects outside the
table plane. In [7], a method for generating spray trajectory
for automatic shoe sole spraying is proposed. B-spline in-
terpolation and curve fitting are performed on the discrete
contour points (acquired by edge detection from 2D image)
to implement automatic generation of 3D spray trajectory.
The curve generation is related to our method of detecting
base contours. However, in none of these works, no synthesis
of the final curve as a combination with the predefined
patterns is allowed and no user interaction is considered.
There are also commercial baking robots [2] which enable
user specification of the cake decoration. Compared to our
approach, only flat 2D patterns are allowed and the whole
specification of the to be executed curve is necessary. Closely
related work to our approach is [8], where they use a pen with
a camera and a dotted paper to define paths for a welding
robot. Compared to our system, fixed position of the object
is expected, and the paths are fixed to one data source,
which is 2D only and proprietary. We offer an algorithm
that can work with any inputs (not only paths fixed to the
CAD model), as long as they contain a series of poses.
In our work, we take an inspiration from non-photorealistic
rendering methods for curve synthesis. In order to apply the
patterns along a curve we use a similar approach to [1]. The
curves are treated as de-composable into multiple levels of
details and feature extraction and reconstruction is performed
using local transformations. We avoid the need for much
data (that is needed e.g. in statistical approach to curve
synthesis in the works of [9] and [10]) as our system works
with a single demonstration. Furthermore, our approach only
requires the user to demonstrate part of the desired trajectory.

Robot motion planning and control. Our sample surface

manipulation task requires following toleranced 6D paths,
i.e., where a tolerance for the end-effector position or
orientation might be given. We need to calculate a joint-
space motion that meets these requirements and also avoids
self-collisions, joint-space discontinuities, and singularities.
Nominally, the MoveIt Cartesian planner [11] could produce
such trajectories, but due to its greedy algorithm it fails
or returns plans of very low quality. In [12] a collision-
free configuration-space path that closely follows a desired
path in task space is produced using tools from computa-
tional geometry. [13] demonstrates spline path following for
redundant robots. They have a 4-DoF robot and follow a
3D spline path. It is, however, not trivial to adapt these
approaches to our 7-DoF robot and the tolerances could
not be facilitated. In contrast, the Descartes planner [14]
allows to incorporate also tolerances on the nominal path,
which enables to optimize the robot motion. For example in
[4], the Descartes planner was used for motion planning in
welding use-cases. Descartes employs a brute-force approach
and its computation and memory requirements make it scale
badly. In this letter, we utilize the Descartes planner to derive
distance optimized joint-space paths. Compared to the other
approaches, we post-process these paths to satisfy also robot
motion constraints and Cartesian velocity limits using custom
constraints using TOPPRA [5], which is an algoritm based on
reachability analysis enabling to create time-optimal plans.

III. MATERIALS AND METHODS

In this section we describe the proposed methods to record
and process custom patterns as well as to apply them along
the given baseline curve.

A. Custom patterns specification and processing

We consider two types of patterns–(i) pure mathematical
parametric curves, or (ii) patterns from a real demonstration
consisting of set of poses along a trajectory. In the second



Fig. 2: Pattern definition using an HTC Vive motion tracker
mounted on a pen-like device (left). The reprojection of
recorded data to the camera image (middle). Trajectory with
tool orientation (right).

Fig. 3: Demonstrated
pattern example. Left:
unprocessed pattern;
right: pattern after
filtering and smoothing.

case, the demonstrated poses can be recorded in 2D (fixed
z-coordinate and orientation), 3D (fixed orientation), or full
6D information (see Fig. 2). In this way, information about
lifting or tool orientation can be utilized. In the following,
we discuss the data formats, and the post-processing steps.

Post-processing. In case of demonstration, the recorded data
is expected to be noisy with varying sampling rate, which
can lead to irregularities and artifacts (see Fig. 3 left).
Thus, the demonstrated patterns are not suited for further
processing (e.g., B-spline construction fails). Therefore, the
pattern is filtered from repetitive points, smoothed with a 1D
Gaussian kernel, and regularly resampled (see Fig. 3 right).
The filtering uses a simple approach. The distance between
each two consecutive points is computed and if it is below a
certain threshold, the second point is removed. This is done
iteratively, until no close points exist.

Most robot controllers require that the jerk is limited
and thus the acceleration is continuous. A curve with C3

continuity can be traced with the end-effector moving at a
constant speed (given that no joint limits are violated and
the robot avoids singularities). There are many ways how to
represent smooth curves [15]. In our case, approximation
of the demonstrated, filtered, and smoothed patterns was
done using polynomial curves, specifically B-splines. The
amount of smoothening and number of points to resample
are selected based on the preset threshold on the distance
between the original and the smoothened curve. The user
can adjust these values in GUI.

B. Pattern application along a baseline in 2D

The pattern application consists of merging a pattern with
the baseline and generating a smooth curve. In the following
we describe our approach that avoids a need for interpolation
and enables smooth connection of individual patterns. Given
a baseline B-spline Bc and a pattern B-spline Bp, the number
of repetitions of the pattern I , the number of points which
will be used for connecting consecutive patterns ngap, the
rotation of the pattern α, and its trimming from start (end)
trs (tre) (see Fig. 7), we can generate the result curve Fig. 5a
as described in the following.

To be able to shift and rotate the pattern points accord-
ing to the baseline without the need for interpolation, we

sample both baseline and the pattern in a way that there
is a one-to-one mapping between baseline points Bc,s and
the repeated pattern points Bp,s, i.e.: length (Bc,s) = I ∗
[length (Bp,s) + 2ngap]. Rotation and trimming is applied
to the pattern B-spline. The trimming removes the first trs
and the last tre points from the sampled pattern B-spline
Bp,s (with length P ): Bt

p,s = {Bi
p,s|trs ≤ i ≤ P − tre}.

To enable smooth transition between patterns and scaling,
we introduce a connection parameter ngap that specifies the
number of points which will be used to connect adjacent
pattern repetitions (truncating ngap points in the beginning
and in the end of each pattern repetition). The connection
between i-th and (i+1)-th pattern is the B-spline Bi

gap. Each
pattern has L = N

I − 2ngap points, where N is the number
of points on the baseline. The rotation and translation RiTi
to shift each pattern repetition i ∈ {1, . . . , I} around the
contour is found as follows:

1. Using first two and last two points of the trimmed and
rotated pattern, we create an approximate B-spline: Ba =
bspline({Br

p,s(i)|i ∈ [0, 1, P − 1, P ]}).
2. For each pattern repetition i ∈ {1, . . . , I} we find

the corresponding points on the contour Bc,s and esti-
mate a rigid transformation of the sampled approximate
B-spline Ba,s to these points (see Fig. 4b): RiTi =
rigid trans(Bi

a,s, Bc,s[iL, . . . , (i+ 1)L− 1]).
3. We apply the found transforms RiTi to sampled points

of the trimmed and rotated pattern Br
p,s for each i ∈

{1, ..., I}, j is indexing individual points of the pattern. The
transformed patterns are superimposed on the underlying
contour Bc as follows (Bc,r being the resulting curve) (see
Fig. 4c).:

Bc,r

[
i · N

I
+ j

]
= Ri ·Br

p,s[j] + Ti, (1)

for i ∈ [0, .., I − 1], j ∈ 1, ...,
N

I
.

The tool orientation at each datapoint of the sampled pattern
Br

p,s is rotated along the z axis by the rotation angle
corresponding to the rotation matrix Ri. This is possible
thanks to the assumption that the patterns are demonstrated
on a flat surface.

4. B-spline Bgap
i for each connection between i-th and

(i+1)-th pattern is estimated by exchanging last ngap points
of the i-th and first ngap points from the (i + 1)-th pattern
by the sampled 7D bspline which was computed using 2
points before and after the gap (see Fig. 4e). The spline
interpolation of positions and orientations enables smooth
transition between end points of individual patterns. An
example of the final curve is shown in Fig. 4f.

C. Projection of the curve to 3D space

Transferring the 2D curve into 3D space (see Fig. 5) is not
a straightforward process. The solution has to also align the
curve with a 3D surface, i.e., the workpiece. Our approach
allows for two formats of inputs. Either a 3D model (e.g.,
a CAD model) of the object is provided in the form of
a triangle mesh or a 3D point cloud (PCL), e.g. from a



(a) (b) (c) (d) (e) (f)

Fig. 4: Application of the pattern to the baseline includ-
ing a gap. (a) baseline Bc. (b) Approximate B-spline Bi

a

transformed around the baseline for each repetition i. (c)
Pattern Br

p,s superimposed on the underlying baseline Bc

via transform RiTi. (d) Final curve when no gap is used
(ngap = 0). (e) Applying B-spline Bgap

i to connect individual
patterns. (f) Final curve when gap (ngap = 4) is used.

depth camera can be used, in case of a model-less workpiece
alignment (as was in our test case, see Sec. IV). Since PCLs
from depth cameras can be irregular and have holes (due
to surface material properties and the sensing technique),
as a first step, we use Poisson surface reconstruction [16]
to obtain triangle mesh from the PCL (as shown in our
application pipeline in the Section IV). In case of both data
formats, the triangle mesh surfaces is then regularly sampled.
We call this sampled surface sampled point cloud (sPCL).

The resulting sPCL is then masked to mark points on the
surface of the workpiece that will be a part of the curve. To
do this, a binary pixel mask is created from the 2D curve. The
sPCL is then projected to the mask image space, resulting
in a 2D sPCL, with each point having a correspondence in
the 3D sPCL. For this, the mask and the sPCL has to be
aligned. In case of sPCL computed from a sensed PCL from
an RGB-D camera, the alignment is simple, since the camera
image coordinate system coincides with the PCL, and thus
the sPCL coordinates system. The masking of the sPCL then
works as follows. For each 2D curve pixel ρ, all points ψi

from the 2D sPCL (and thus also the 3D sPCL) are selected,
for which the following holds:

||ρ− ψi| |2 ≤ τ,

where τ is a distance threshold. Each selected point ψi is
assigned a weight based on the inverse of its distance from ρ.
The final 3D curve point P, corresponding to ρ is computed
as weighted average of the selected points ψi. The resulting
3D curve is smoothed by convolution with a Gaussian kernel.

Optionally, the user can set the z-axis (orthogonal to the
table surface) position or offset for the 3D curve points.
Finally, the surface normal for each 3D curve point is
estimated from the surrounding sPCL points.

If custom tool orientation (from demonstration) should
be applied, the normals are used to align it to the surface
(Fig. 6d). The assumption is that the demonstration is done
on a flat surface (e.g., a table), with the z-axis orthogonal
to that surface. Thus, the surface normals for all points
are aligned with the z-axis. During execution on a non-
flat surface, the deviation of the normals from the world
z-axis (orthogonal to the ”main” plane, e.g., a worktable
– typically aligned with the xy plane of the robot base
coordinate system) is used to compute the adjustment for
the tool orientation required to align it with the surface.

(a) 2D curve (b) raw 3D (c) smooth 3D (d) up-sampled

Fig. 5: Transferring the curve from 2D to 3D and smoothing:
(a) 2D curve resulting from application of a pattern to a
baseline, (b) 3D curve fitted to the 3D sPCL. (c) smoothed
3D curve, (d) 3D curve computed from an up-sampled sPCL.

Specifically, the following equation is used to compute a
rotation vector from the world z-axis (z) and each normal
n:

rvec =
z × n

∥z × n∥
arccos

(
z · n

∥z∥ ∥n∥

)
(2)

A rotation defined by the rotation vector rvec is applied to
the tool orientation. This is done for every point of the curve.

D. Robot Control

Executing a weakly constrained 6D path with a redundant
manipulator efficiently is not a standard motion planning
task. Furthermore, adhering to constraints on speed and
orientation of the end-effector is making this optimization
problem more tight. Here we describe our approach that
introduces novel custom constraints used to time-parametrize
joint-space paths produced by the Descartes planner.

The end-effector paths are specified by a sequence of
points and tool orientations (see Fig.6d). The tool orienta-
tions can be surface normals of the target surface or custom
tool orientation specified during the demonstration. We find a
joint-space path by solving the path-wise inverse kinematics
problem offline using the Descartes toleranced planner ([14],
[4]) that showed in our initial evaluation better performance
and reliability compared to Cartesian planner of the MoveIt
motion planning framework.

We resample the path to 250 points per meter in order
to reduce the computational load and avoid numerical insta-
bilities using B-spline interpolation. A toleranced trajectory
point is created for every waypoint in the path (zero tolerance
for the position and a 36° tolerance with 0.1° resolution
around the z-axis of the end-effector). This makes the
planner more robust against noisy input data (in the normals)
and also allows optimizing the trajectory. It is important
to select the path discretization in accordance with the
tolerance resolution. Otherwise, the robot’s dynamic limits
might prevent to reach even the neighboring states or requires
high accelerations to do so. Note that the tolerances are
activity specific. For example, gluing, drawing, and milling
have different requirements on the end-effector orientation.

We introduce custom constraints and time-parametrize the
path that was returned by the planner using the TOPPRA
algorithm [5]. In this way we create a trajectory that obeys
the robot’s joint velocity and acceleration limits and in
parallel enforces the limit on the speed of the end-effector
and minimizes the time for completing the motion. TOPPRA



(a) Real setup
with 3D surface.

(b) Detected
pointcloud.

(c) Curve on the 3D surface.

(d) Input data for the planner
(waypoints with normals).

Fig. 6: The object surface detected by Intel Realsense D435
camera (eye-in-hand) (a) is reconstructed (b), selected curve
is applied to it (c) and the waypoints with adjusted tool
orientations are sent to the robot (d).

allows to specify constraints in the form of Eq. 3

F(q)Dyn(q, q̇, q̈) ≤ g(q), (3)

where Dyn is a function of the form given in Eq. 4:

Dyn(q, q̇, q̈) = A(q)q̈+ q̇TB(q)q̇+ f(q). (4)

By substituting B(q) with the product JT (q)J(q) (J(q)
being the end-effector Jacobian at q), q̇TB(q)q equals the
squared velocity of the end-effector. Setting F (q) = I , where
I is the identity matrix, and g(q) = v̄2, we can formulate a
general speed limit for the end-effector. To ensure numerical
stability, we scaled the g(q) and Dyn(q, q̇, q̈) with a factor
of 105.

A path-dependent speed limit on the end-effector can
be formulated using the path-indexed version of the joint
velocity constraint implemented in TOPPRA. It requires to
provide a path-indexed velocity limit function–see our im-
plementation of the function vlims func in the code linked on
our webpage. For every trajectory point, the Jacobian and the
direction of motion are used to calculate an individual joint
velocity limit. Note that this option allows a more flexible
selection of the end-effector speed and is thus preferred.

We assume that the objects are largely convex, such that
the surface points can be reached without collision when
approached from the outside. We ensure that every path point
is reachable by the robot. The user is notified about non
reachable points and can adjust the object’s position.

IV. ROBOTIC AND EXPERIMENTAL SETUP

To test the proposed methods we created two physical se-
tups. First one for custom pattern demonstration and second
one for execution of the generated path on a real robot.
Pattern demonstration setup The demonstration setup con-
sists of an HTC Vive virtual reality tracking system. An HTC
Vive tracker, providing 6D poses at 60Hz, was mounted on
the end of a pen-like metal rod (see Fig. 2). The other end
(i.e., the “tip”) of the rod was used to draw a pattern. The
position of the tip of the rod was calibrated by fixing the tip
in one place and performing a spherical motion with the end

(a) detected and custom contours
(b) scaled contours
& applied pattern

(c) rotated
pattern

(d) rotated
pattern

(e) rotated
pattern

(f) no trim-
ming

(g) 20%
trim

Fig. 7: (a) detected contours for all available objects visu-
alised via GUI, a custom drawn contour (red). (b) A scaled
contour with a pattern applied to it. Patterns can also be
shifted, rotated ((c), (d), (e)), or trimmed (see (f) vs. (g)).

where the HTC Vive tracker was mounted. This generated
points on a sphere with the center in the tip. The center was
then estimated from the points using ordinary least squares
optimization. For visualization purposes, there was also a
camera calibrated towards the HTC Vive coordinate system.
We record position and orientation of the tool, allowing
demonstration of basically arbitrary pattern on a flat surface.
Robotic setup The real robot setup is shown in Fig. 6a. It
consists of a KUKA iiwa LBR 7 robot with a Realsense
D435 camera attached to the last link and a pen as end-
effector (passively compliant in tool axis). The robot is
controlled via ROS. We use the Descartes [14] and the
MoveIt! Framework [11] for motion planning.
Experimental application pipeline For user interaction with
the testing system, we developed a graphical user interface
(GUI) which supports the baseline definition and alignment
as well as pattern application functionality. The user can
select a detected object contour or draw a custom one
(see Fig. 7a and Fig. 7b), select pattern to apply to this
contour and adjust various curve and execution parameters
(see Fig. 7c-7g) before starting the execution by the robot.
The applied pattern can be inspected in 2D and 3D. The
contour detection is done from a robot-mounted camera.

V. EVALUATION MEASURES

In this section, we present measures to evaluate the quality
of the generated curves and corresponding trajectories with
respect to their executability by a robot as well as the
quality of the executed path. First, we want to demonstrate
the quality of the produced curves on a purely geometric
level (Ms). Second, an end-effector centric set of measures
(Mv and Md) to show quality of the task execution is
presented. The third group of measures(Mvm,Ma, and Mp)
concentrates on the cost associated with the robotic motion.

Measures Mv and Md are dependent not only on the
generated curve, but on the whole motion planning and
control pipeline of the used robot. For the measures Mv ,
Mvm, and Ma we exclude the start (first acceleration) and



end (last deceleration) of the trajectory execution from the
computation to avoid systematic error.
Smoothness of the curve (Ms): We consider similar smooth-
ness measure of the generated curve as was used in [17], [18],
namely the integral over the square of arc-length derivative
of curvature along the path. Ms is an equivalent measure for
discretized curves (constant sampling density), which gives a
more detailed account over the distribution of the curvature.

The angle φi between the vectors spanned by each three
consecutive points (xi, xi+1, xi+2) is a measure for the
curvature of the path (see Fig. 8).

φi = arccos

(
< ū, n̄ >

|ū|.|n̄|

)
< Ti (5)

Fig. 8: Computation of the angle between three consecutive
curve points.

We divide the range of 180◦ into five bins using the
following threshold values: T0 = 0◦, T1 = 10◦, T2 = 30◦,
T3 = 45◦, T4 = 90◦, and T5 = 180◦. We use the probability
density function (PDF) approximated over these 5 bins is a
measure for the smoothness:
Sk = 1

n

∑n
i=1[|φi| ∈ [Tk−1, Tk]]. The smoothness mea-

sure (Ms) is then characterized by the 5-tuple of these values:

Ms = {S1, S2, S3, S4, S5}. (6)

End-effector velocity deviation (Mv): Let vi be the end-
effector speed at time ti. We approximate the integral over
the squared deviation from the set speed v0 by a finite sum
(see Eq. 7), where T = tn − t0, ∆ti =

ti+1−ti−1

2

Mv =
1

T

∫ T

o

(v − v0)
2dt =

1

T

n∑
i=1

(vi − v0)
2∆ti. (7)

The maximum stable velocity (Mvm) is the maximum
velocity v0, for which the Mv (Eq. 7) is under a given
threshold T :

MT
vm = vTmax = argmax

v0

Mv ≤ T. (8)

Acceleration (Ma): As a measure for the wear and tear as
well as the energy consumption, we report weighted mean
of the absolute acceleration values for each joint.

Ma =
1

T

n∑
i=1

∆ti||wai||2, (9)

where aki is the acceleration of the k-th joint at the i-th
point in the trajectory and wk is a positive weight to scale
the impact of the k-th joint. When choosing wk = (akmax)

−1,

Ma becomes a measure for the saturation of the acceleration
limits.
Length of a motion (Mp): We consider the (weighted)
length of a motion in joint-space as a good measure to
compare several motion plans for the same task (shorter is
better). The used diagonally weighted norm for this measure
allows to account for the different cost incurred by the mo-
tion of each joint (earlier joints in kinematic chains usually
have to overcome significantly higher inertial moments). The
measure is defined as:

Mp =

N−1∑
i=0

Lw(xi,xi+1,w), (10)

with L is defined for a, b ∈ Rn and unit vector w ∈ Rn
+ as

L(a,b,w) =

√√√√ N∑
i=1

wi(ai − bi)2. (11)

Deviation from the reference curve (Md): Dynamic Time
Warping (DTW) [19] is used as a measure to evaluate the
positioning precision of the end-effector during the motion
relative to the reference curve. It is necessary to use DTW
since no timing information is available for the reference
curve. We use the fastdtw python implementation [20] with
radius 30 and norm the result with the number of recorded
joint states in the log n = ||log|| in the execution:

Md =
1

n
DTW(log, ref) (12)

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the quality of the generated
trajectories as well as task execution quality, i.e., how well
the robot (real or simulated) was able to perform a given task.
The tasks require to move the end-effector with a constant (or
given) speed along a path in space. We report the values for
the proposed evaluation measures (as listed in Sec. V). We
also show the effects of individual processing steps, different
robot planners as well as real vs. simulated execution.

A. Pattern Processing

We evaluated the effect of pattern quality on the quality
of the generated trajectory and its execution. We compared
hand demonstrated pattern with a basic processing (only
filtering – without it, the pattern was too noisy to convert
to a B-spline), hand demonstrated pattern with full process-
ing (filtering, smoothing and resampling), artificial pattern
generated directly by sampling from a smooth B-spline,
and no pattern. The experiments were conducted with a
curve resulting from 30 pattern repetitions applied along an
artificial circle baseline. The velocity deviation error (Mv)
for different given speeds is shown in Fig. 9.

As expected, the least processed pattern, have worse
deviations from the desired speed over the whole range of
tested speeds. For the baseline experiment, i.e., when no
pattern is applied, Mv is significantly lower than for all the
other cases and thus the maximum stable velocity achievable



Fig. 9: End-effector velocity deviation Mv for varied v0 for
real and simulated executions of 10 pattern repetitions in
different processing stages. The baseline is an artificially
generated circle with diameter of 10 cm. The patterns are
increasingly processed knots (only filtered - f, fully processed
- sfr, fully processed with gap - sfr-gap, and artificial). Ad-
ditionally, executions of a circle without pattern are shown.

is significantly higher. Artificial and processed patterns reach
similar Mv for lower speeds, but for speeds above 0.1 m/s
the fully processed hand demonstrated patterns achieve lower
Mv , i.e., are easier to execute.

Non-smooth patterns lead to micro oscillations saturating
the actuators. To follow the path the robot must slow down
until the acceleration limits are not violated anymore. The
comparison of end-effector speeds over time for v0 =
0.07m/s (10 repetitions of knot applied to a circle) are
visualised in the Fig. 10. The differences in velocity stability
for various levels of processing are for this speed already
clearly visible. The application of a gap connecting consec-
utive iterations of patterns via a fitted B-spline allows 14.1%
faster executions at Mv = 0.005m2

s2 (M0.005
vm 15.3 vs. 13.4

cm
s ) and 14.6% faster executions at Mv=0.02m2

s2 (M0.02
vm 23.5

vs. 20.3 cm
s ) compared to fully processed path where no

gap was applied. The executions on the real robot yielded
to M0.005

vm 13.1 and 16.6 cm
s for the fully processed and the

circle without pattern, respectively.
Application of the gap improves all of the measures (see

Table I). The improvement of MS1+S2
s measure indicates

that the application of the gap avoids the typical sharp turns
between the patterns (both MS4

s = 0 and MS5
s = 0), which

affects the executability by the robot the most. The measure
Mp can only be compared for the same pattern, i.e., the
hand demonstrated patterns. It can be seen that application
of gap significantly shortens the traveled distance as the
connection between patterns is way smoother. Similar results
were observed for other applied patterns. Fig. 12 gives visual
examples of several hand drawn patterns applied to two
different contours. See our webpage for more examples.

B. Real vs. simulated experiments and comparison of robotic
motion planners

To validate our approach including the simulation exper-
iments, we implemented the system on a real robot shown
in Fig. 6a. We conducted two types of experiments. The

Fig. 10: Comparison of the end-effector speed over time for
10 knot repetitions on a circle contour with 5cm radius and
end-effector set speed v0 = 0.07m

s . Compared are: MoveIt!
Cartesian planner with fully processed pattern with gap (sfr
+gap, cart) compared to Descartes planner with only filtered
pattern (f), fully processed pattern without gap (sfr), and fully
processed pattern with gap (sfr + gap).

Pattern MS1+S2
s Mv[10−5] Ma Mp Md[10−3]

none 1.00 40.0 0.427 2.14 N/A
knot A 0.97 153.6 0.795 4.26 2.91

knot (filt) 0.94 177.3 0.783 6.23 1.74
knot (fully) 0.95 150.1 0.793 6.38 1.91

knot(fully+gap) 0.97 62.3 0.763 5.85 1.67

TABLE I: Evaluation of measures for a circle contour with
the following patterns (run on simulated robot): no pattern
(none), with artificial knot (knot A), with fully processed
demonstrated knot (knot fully), with only filtered knot (knot
filt), and with fully processed knot with gap (fully+gap). The
desired execution speed was v0 = 0.1m/s.

first experiment was conducted on the L-shaped workpiece
where the knot pattern was applied with end-effector speed
v0 = 0.05 m

s . Fig. 11a shows the path generated from the
visual input (cf. also Fig. 5d) of the scene and the selection
of a pattern in grey. For safety, we filter this path to avoid
collisions with the table (i.e. enforcing a lower bound on
the z-value). The resulting safe reference path is show in
blue. The actual end-effector path is depicted in red. The
precision of keeping the velocity constant was M real

v =

0.0012m2

s2 and even slightly better than the simulated value of
M sim

v = 0.0015m2

s2 (see Fig. 9). The average acceleration of
the joints was Ma = 0.31m

s2 , the travelled distance in joint
space Mp = 5.56 rad, and values achieved by Cartesian
planner were Mv = 1.91 · 10−5 m2

s2 , Md = 1.8 · 10−3 m,
Ma = 0.34 m

s2 , and Mp = 5.87 rad. The velocity stability
is with Mreal

v = 6.01197 · 10−5 m2

s2 better than the simulated
Msim

v = 9.11 · 10−4 m2

s2 . The inferior performance of the
Cartesian planner compared to the Descartes planner w.r.t.
the velocity stability for v0 = 0.07m

s is also nicely visible in
the Fig. 10. Detailed comparison on various curves and pat-



(a) TCP curve re-
quest based on the
camera images (grey),
safety filtered (blue),
and the actually mea-
sured TCP path (red).

Fig. 12: Visual samples of the patterns Zigzag, Handknot,
S-wave, and Z-wave on square (bottom) contours. Neither
rotation nor trimming is applied.

terns of Cartesian and Descartes planner is on our webpage.
Additionally, we run the velocity stability experiment on

a real robot (see Fig. 9). Same as in the simulation, the knot
pattern was 10 times applied on the circle with a diameter of
10 cm. For velocities up to 0.05m

s , the stability is very good
(low error of Mv ≈ 0.001m2

s2 ) for all experiments (see also
Fig. 9). Above that, the real executions are slightly worse
than the corresponding simulated ones.

VII. CONCLUSION AND DISCUSSION

In this paper we proposed methods for the specification
and processing of surface manipulation tasks. The processing
pipeline takes as an input user-defined patterns and baseline
connected to the given surface and generates a tool-path
by applying the pattern along the selected baseline. The
stable end-effector speed required by many industrial tasks
is enforced by custom constraint in the time parametrization
process. We also present a set of measures which we used to
evaluate the quality of the generated curves and correspond-
ing tool-paths w.r.t. their executability by a robot.

The proposed methods were tested in several simulation
experiments and also on a real robotic setup. The experiments
have shown that our system is able to produce a smooth
trajectory which is executable by a robot for a variety
of patterns and baselines (see Fig. 12).The experiments
also confirm the hypothesis that higher processing of the
pattern results for this type of data in a smoother trajectory
which allows execution of the path at a higher stable speed.
Although for the speeds up to 0.05 cm/s the task can be
executed with very stable velocity independently on the level
of processing, for higher speeds we observed significant
differences (see Fig. 9). Mv increases for higher speeds
and less smooth tool paths as individual joint acceleration
limits will become saturated. For example, the application
of the gap to connect fully processed patterns resulted in
approx. 15% faster executions at both Mv = 0.005m2

s2 and
Mv = 0.02m2

s2 compared to the case when no gap is applied.
The proposed methods can help in automation of tasks in

small lot-size production scenarios. The pattern definition
methods facilitate the task definition. The curve processing
and trajectory parametrization makes the execution more
efficient.
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