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Abstract— Modern lightweight dual-arm robots
bring the physical capabilities to quickly take over
tasks at typical industrial workplaces designed for
workers. In times of mass-customization, low setup
times including the instructing/specifying of new
tasks are crucial to stay competitive. We propose
a constraint programming approach to simultaneous
task allocation and motion scheduling for such indus-
trial manipulation and assembly tasks. The proposed
approach covers dual-arm and even multi-arm robots
as well as connected systems or machines. The key
concept are Ordered Visiting Constraints, a descrip-
tive and extendable model to specify such tasks with
their spatiotemporal requirements and task-specific
combinatorial or ordering constraints. Our solver in-
tegrates such task models and robot motion mod-
els into constraint optimization problems and solves
them efficiently using various heuristics to produce
makespan-optimized robot programs. The proposed
task description model is robot independent and thus
can easily be deployed to other robotic platforms.
Flexibility and portability of our proposed model is
validated through several experiments on different
simulated robot platforms. For large manipulation
tasks with 200 objects, our solver implemented using
Google’s Operations Research tools and ROS requires
less than a minute to compute usable plans.

I. Introduction
Modern lightweight dual-arm robots such as the ABB
YuMi or the KaWaDa Nextage are designed in the
style of a human torso to be easily applicable in in-
dustrial workplaces designed for workers. These types of
robots are an answer to the demand for flexible, cost-
efficient production of customer-driven product variants
and small lot sizes.

Such flexible production requires fast methods to spec-
ify new tasks for these robots. Classical teach-in by
means of fixed poses and paths is not appropriate. With
the capabilities of today’s perception systems, which can
detect and localize workpieces, boxes, and tools auto-
matically in typical workplaces, and a formalized goal or
high-level task specification, the manual teach-in may be
replaced by automated planning – in principle. Optimal
planning involves three aspects: (a) task planning of
the necessary steps and actions to achieve the overall
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Fig. 1. Assembling of wiper motors with a dual-arm robot. The
robot picks a tool from (C), places it on the shaft of the rotor of
an electric motor in the workpiece holder (B), picks an electric
interface, supplied in a container (B) and places it on the motor
shaft.

goal/task, (b) scheduling of these steps and actions, and
(c) motion planning for each step and action.

Dual-arm manipulation further requires to decide
about (d) the allocation of task steps and actions to the
individual arms. Moreover, the complexity of scheduling
and motion planning is increased heavily, due to the ne-
cessity to closely coordinate the manipulators to prevent
self-collisions of the robot.

All four aspects – task planning, scheduling, allocation
and motion planning – are closely interrelated. Ideally,
to achieve optimal plans with regard to the makespan
(production time) or similar objectives, they have to
be considered in one coherent formalism and planning
algorithm. In the last years, significant progress has
been made to closely couple task planning with motion
planning by passing feedback from motion planning to
task planning (e.g., [7], [4], [14], [16], [5]), but research is
still far from an ideal solution.

In many industrial use-cases, task planning is not
required as the necessary steps and actions to process
and assemble a workpiece are already given in digital
form. That is, we already have an abstract plan, but with
a number of unknowns and degrees of freedom in terms
of the three aspects scheduling, allocation and motion
planning. Computing an optimal, executable plan again
requires to treat these aspects in a highly integrated and
coherent manner, which we refer to as simultaneous task
allocation and motion scheduling (STAAMS). An optimal
plan depends not only on the motion of the manipulators



but also on the order in which a workpiece is assembled,
the order in which the components are taken from boxes
or conveyor belts, in which they are processed by other
machines, etc. – in particular if connected systems or
machines impose temporal constraints. The number of
actions to be scheduled can be very high which results
in big combinatorial complexity. Moreover, a suitable
STAAMS solver has to consider different assignments of
subtasks to arms, while taking the individual working
ranges into account as well as task steps in which the
arms have to cooperate.

In this paper, we propose a flexible model and solver
for STAAMS for multi-arm robots in industrial use-
cases. The proposed model and solver are based on con-
straint programming (CP) and constraint optimization,
respectively. The key concept of the model to specify an
abstract task plan is named Ordered Visiting Constraints
(OVC). The OVC concept is developed out of the ob-
servation that many production steps can be described
concisely by sequences of actions (e.g. drilling, picking,
welding or joining) to perform with one of the robot
arms at given locations, with temporal constraints and
dependencies between them.

Our approach utilizes the fact that many industrial
workplaces provide a controlled and unobstructed en-
vironment in which motion planning can be performed
using precomputed roadmaps. For the robot motions, we
propose a model of time-scalable motion series that can
be directly integrated with constraint-based scheduling.
By the concept of Connection Variables, we link the two
models – the task model and the motion model – flexibly
and seamlessly into an unified STAAMS problem model.
The proposed solver tightly integrates value selection
heuristics, scheduling and Luby restarts to compute an
optimal plan for a given model instance.

An important feature of our approach is the portability
of an abstract model to a different workplace layout and
robot. This portability is achieved by clearly separated
submodels for the robot’s kinematics and for the map-
pings from symbolic locations to geometric poses in the
workplace.

The remainder of this paper is organized as follows:
We discuss related work in Sec. II before we present
an analysis of typical industrial use-cases in Sec. III.
Our main contributions, the STAAMS model with the
OVC-based task model and the motion model as well as
the corresponding planning system, are presented in the
Sections IV and V, respectively. We show the scalability
and portability of the proposed system and compare it
to pure time-scaling in Sec. VI. The paper is concluded
in Sec. VII.

II. Related Work
We can see the motion planning and scheduling sub-

problems of STAAMS as a multi-robot motion planning
problem, where the objective is to find a path for each
robot leading it from start to final configuration without

colliding with other robots and obstacles. State-of-art
approaches tackling this problem often do not address
the task/goal allocation problem, i.e., goals/tasks are
assumed to be given.

LaValle [15] formulates the motion scheduling problem
in a joint configuration space derived from the Cartesian
product of the configuration spaces of all robots. Another
view to solving this problem is to employ a decoupled
approach including prioritized planning, fixed-path plan-
ning, or fixed-roadmap planning: Prioritized planning
assigns an order to the robots (arms) according to which
their movements are planned [13]. In fixed-path planning
– also referred to as time-scaling – every robot follows a
given path and the planner only adjusts the timings along
the paths to prevent collisions [18]. In fixed-roadmap
planning, topological graphs for the configuration spaces
of each robot are used to plan the paths and the timings
together.

Our proposed method falls in the third category.
A fixed-roadmap is particularly suitable for industrial
settings, as the environments are not often subject to
change. Kimmel et al. [10] employ a time-scaling ap-
proach via an incremental search over coordination dia-
grams to schedule two given sequences of pick-and-place
tasks. Time-scaling problems can be modeled easily as
a special-case with our STAAMS model. Our approach
performs such time-scaling in its last step. In Sec. VI,
we compare our simultaneous task allocation and motion
scheduling approach with pure time-scaling using an ex-
perimental setup in the style of the one used by Kimmel
et al.

Alatartsev et al. [1] present a survey about the task
sequencing problem for industrial robots, where sources
for execution variants are systematically identified for
a given task specification (e.g., multiple inverse kine-
matic solutions, partial ordering) and optimized based
on various cost functions. The survey, however, lacks
the coverage for tasks that are applicable for multi-arm
robots.

In the context of constraint optimization for task
scheduling in industrial applications, Kolakowska et al.
[12] plan paint strokes to account for paint quality with
respect to the stroke order and direction. The scheduling
considers only the movements to the beginning of the
stroke, not the stroke itself, thus ignoring the depen-
dency between the stroke motion and the order. This
approach is not generalizable to multi-robot scenarios,
as this dependency cannot be ignored due to robot-robot
collisions.

In our approach, we employ CP to model the abstract
task specification and the robot motion. Similarly, Ejen-
stam et al. [6] use CP to solve the problem of dual-
arm manipulation planning and cell layout optimization.
They, however, discretize the workspace in a coarse level,
e.g., a node in their roadmap can resemble a larger
workspace partition, and disallow two arms being in the
same node to avoid collisions. Conversely, we create dense



roadmaps to enable the close coordination of arms, thus
allow more parallel movements of arms.

Kurosu et al. [13] describe a decoupled MILP-based
approach to solve a STAAMS, where the allocation and
order of the tasks decided by a MILP solver are given to
a motion planner to find collision-free motions. However,
if the motion planner fails to find a feasible solution
mainly due to the simplified motion and cost model used
in the MILP formation, a new MILP solution will not
be generated. This is not the case for us, as a single
CP solver finds a mutually feasible solution for all sub-
problems.

In our previous work [2], we hand-coded the full
requirements of robot and workspace in the MiniZinc
language. In this paper, we introduce a coherent for-
malism which allows to model the robot and workspace
as well as an the abstract task plan and its invariants.
We propose OVCs as task model primitives and time-
scalable motion series as motion model primitives. Also,
we provide automated procedures to create the data
objects such as the roadmaps for motion planning, which
may be created automatically from 3D sensor data and
cover the full workspace of a real robot. Most important,
our planning system uses carefully chosen variable order-
ing and value selection heuristics for efficient planning.
For the implementation, we used the Google Operation
Research tools [8], which (in contrast to MiniZinc solvers)
allows fine-grained definition of the search strategy.

III. Use-case Analysis
In this section, we describe three typical industrial use-
cases for dual-arm robots, followed by an analysis of
characteristic properties and prevalent concepts. These
properties and the concept of Ordered Visiting Actions
serves as basis for the design of our STAAMS model in
Section IV.

A. Use-Cases
Assembly of wiper motors. At the workstation de-
picted in Figure 1, the rotors are already inserted into
workpiece holders (A) on a conveyor system, arriving in
groups of five. The stators with the brushes and the elec-
tric interfaces are supplied in transport containers (B).
Mounting a stator on a rotor requires to place a cone-
shaped tool on the motor shaft temporarily. (C) marks
the home position of this tool.

Sorting objects. The robot has to pick up colored
objects from the table and place them depending on
their color in one of two containers. All parts on the
table are reachable by both arms. The containers are only
reachable by either of the arms (see Fig. 4) so that an
object’s color defines the arm that has to pick this object.
This use-case inspired by Kimmel et al. [10] will serve as
a reference use-case for the evaluation.

Injection molding. Parts have to be taken from a
source container and inserted into an injection molding
machine. When the molding process is finished, the parts

have to be taken from the machine and placed under a
camera for visual inspection and hold into a fixture for
an electrical check. The latter requires to press a button
simultaneously to start the check. While the molding
machine may process two parts simultaneously, the visual
and electrical checks can only process one part at a
time. Finally, the finished parts are placed in another
container.

B. Analysis

These industrial use-cases illustrate several characteristic
properties:

Controlled environment. Industrial workplaces
provide by design a controlled and unobstructed envi-
ronment. Therefore, we assume that all object locations
and possible placements are known in advance, which
allows for offline pre-calculation of motion roadmaps and
collision tables. Furthermore, we may assume the absence
of external interferences such as humans.

Unobstructed workspace. We assume that relevant
objects never obstruct each other. This implies that there
exists a collision-free subspace of the workspace that
does not alter over time and allows to reach all relevant
object locations with at least one robot arm. For example
this applies to drilling, riveting, welding, glueing, and
assembling of small parts. As a consequence, we do
not require a complex scene graph (cf. [3]) that tracks
geometric relations between all objects in the workspace.

Ordered Visiting Actions. Suitable plans for these
use-cases may be specified as a series of motions (per
arm) to visit relevant locations in the workspace. At
each location, the manipulator may perform local actions
such as turning in a screw or picking an object from
a container, which – for our scheduling purposes – can
be abstracted as constraint on the visiting duration at
that location. While the overall order of actions may be
changed, some actions like pick-and-place are subject to a
partial ordering and are therefore considered as an entity.
We refer to such entities as Ordered Visiting Actions
(OVA) in the following. OVAs may be used to model
many advanced tasks such as joining, welding, sorting,
inspecting, drilling, and milling.

Temporal dependencies. Often, there are addi-
tional temporal dependencies between OVAs. For ex-
ample, molding has to precede the visual and electrical
checks in the molding use-case and in the motor assembly
use-case the temporal dependencies are given by the
assembly sequence for each motor. In the sorting use-
case, there are no temporal dependencies between the
OVAs per se. Yet, each arm can transport only a single
object at a time, i.e. the gripper is a reservable resource,
which requires to schedule the OVAs per arm.

Active components. Another important observation
is that processing stations in the workspace may also take
on different configurations, just as the robot arms. An
example is the door of the molding machine in the third
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Fig. 2. Overview of CP-based STAAMS model

use-case. We refer to such stations and all active robot
components together as active components.

The key concept of the following STAAMS model
are Ordered Visiting Constraints (OVC), which are
constraint-based blueprints for OVAs. A set of OVCs
and the temporal dependencies specify the essence of
the overall task, but leaves open many allocation and
ordering decisions as they are subject to optimization by
our solver. This task-centered approach allows to include
the experts intuition about the solution as constraints or
heuristics into the solving process.

IV. CP-Based STAAMS Model
In this section, we define our STAAMS model, which
is based on constraint programming (CP). The core
elements of such a program are variables and logical or
arithmetic constraints between those variables.

Figure 2 shows the key concepts of our model. First,
we explain the variables and constraints that model the
robot motion. Subsequently, we present our task model
with the key concept Ordered Visiting Constraints. For
readability, we write constants or values as lowercase
Latin letters, constraint variables as capital letters, and
compounds of constraint variables as small Greek letters.

A. Motion Variables and Constraints (Motion Model)
As mentioned before, a plan for a robotic system is a
timed motion series per arm. Here, we describe the vari-
ables making up the motion model and other auxiliary
components.
Def 1. A location l ∈ SO(3) denotes a pose of
interest in the workspace (in particular possible object
placements in containers and workpiece holders) in a
common reference system. The set of all locations is L.
Def 2. An active component A is a unit of a robotic
system (e.g. a manipulator) or another machine under
the control of our system. The set of all active compo-
nents is A.
Def 3. A roadmap r = (C,E) is a discretized, graph-
based representation of the configuration space (cf. for
example [9]) of an active component a. The nodes C
are configurations of a, e.g. manipulator joint angles. In

Fig. 3. A roadmap for the left arm of a KaWaDa Nextage robot.

particular, there are one or more nodes for all locations
that can be reached by a. For better connectivity, further
traveling nodes are sampled in free space. The edges
E are inserted between neighboring configurations, if a
short motion plan for a collision free traversal between
them exists. The edges have the minimal traveling time
as weight. The roadmap thus yields information about
paths between configurations and their lengths to be used
in the CP (cf. Fig. 3). C may also include multiple nodes
for the same configuration – e.g., to consider the different
collision geometries of the arm depending on the gripper
state.
Def 4. The location mapping λ holds for every
location l ∈ L the set of roadmap nodes (i.e. robot
configurations) that reach to l.
Def 5. A collision table cti,j is defined for two
roadmaps ri and rj and lists all pairs of conflicting nodes.
Def 6. An interval I is a tuple (Ts, Te, D) of CP
variables with Ts as start time variable, Te as end time
variable and D as duration variable.
Def 7. A motion series σ is a sequence of m configura-
tion variables and a sequence of 2m−1 interval variables
(cf. Fig. 2)

σ = ([C1, . . . , Cm], [Iw
1 , I

t
1, I

w
2 , I

t
2, . . . , I

w
m]).

An interval variable Iw
i models the time spent at configu-

ration Ci whereas It
i denotes the traveling time between

the configurations Ci and Ci+1. The set of all motion
series – one for each active component – is named Σ.

During scheduling, the shortest traveling times be-
tween any two configurations is computed from the
roadmap to set the duration of It

i once Ci and Ci+1 are
bound.

To prevent collisions between active components, we
add a constraint for each pair of active components ai

and aj . If ai and aj assume configurations that are in
conflict according to cti,j , this constraint requires the
corresponding intervals to be temporally disjunctive.
With the defined variables, we can describe a time-
scalable motion series for each active component. In the
next subsection, we introduce our task model with its
Ordered Visiting Constraints concept.

B. Ordered Visiting Constraints (Task Model)
In Section III-B, we elaborated that Ordered Visiting Ac-
tions (OVAs) are a natural and comfortable description



of behavior for assembly robots. Here, we introduce our
constraint-based formalization of OVAs.
Def 8. An Ordered Visiting Constraint (OVC)
represents an OVA and is defined by a tuple

ω = (A, [P1, ..., Pl], [L1, ..., Ll], [I1, ..., Il], Cintra).

Variable A represents an active component and thus
has domain A. The variables Pj represent the primitive
actions (e.g. pick, place, drill, etc.) to be executed. The
variables Lj describe locations in the domain L. The
variables Ij model time intervals. A triple Pj , Lj and Ij

denotes that active component A shall perform action Pj

during time Ij at location Lj (cf. Fig. 2). More precisely,
during Ij , it shall be in a configuration C with C ∈ λ(Lj)
to perform Pj . We refer to the set of all OVCs as Ω.
Cintra is a set of constraints on these variables. Exam-

ples for such constraints are the selection of certain active
components, a set of locations to visit, specific primitive
actions to be performed, or a minimum waiting time at
a certain location.
Def 9. Inter-OVC constraints Cinter may be used
to define task-specific constraints between two or more
OVCs. Typical examples are temporal constraints be-
tween OVCs (e.g., by causality, for synchronization, or
for mutual exclusion) or combinatorial constraints (e.g.,
to distribute m source locations amongst n OVCs).
Def 10. A resource r is an abstract or physical ob-
ject (e.g., a tool, a workpiece holder, a robot gripper,
etc.) that can be reserved exclusively for arbitrary time
intervals. Typically, reservations are defined the by refer-
encing start or end variables of interval variables of those
OVCs that require this resource (cf. Fig. 2).

C. Examples for Task Modeling with OVCs
Programming with OVCs is conceptually more like ar-
ranging a plan than imperative programming. The OVC
variables we create resemble the OVAs to be carried
out. A simple pick-and-place action can be implemented
straightforwardly by a single OVC with two location vari-
ables L1 and L2 constrained to start and goal location.
If no constraint is given on A, any arm may perform the
action.

The sorting use-case may be implemented by one such
OVC per object. The solver may then decide about the
partitioning of the OVCs to the two arms and the order
per arm.

Alternatively, the sorting use-case may be imple-
mented by OVCs without intra-OVC constraints on L1
but with an inter-OVC constraint enforcing different
location values for all L1 variables of all OVCs. L2 has
to be constrained depending on the object color, given
by the solver’s decision for L1.

For the electrical check in the third use-case, two
actions have to be coordinated. This task is modeled
by two OVCs: ωfixture for holding the part into the
fixture and ωpush to push the button for starting the
check. ωpush has one location variable constrained to the

button location (i.e. L1 = lButton). ωfixture has three
location variables constrained to the position for the
visual check, the fixture location, and the destination
container. To synchronize the two OVCs, we constrain
the push interval (I1 of ωpush) to be during the fixture
interval (I2 of ωfixture).

After creating the appropriate number of OVCs, we
generally strive to constrain the OVC variables as far
as possible to prevent symmetric solutions, but without
excluding the optimal solution. For example, in case of
the second alternative for the sorting use-case, we would
fix the order of the OVCs by an inter-OVC constraint
to prevent that the assignment of the L1 variables is
permutated just as the ordering of the OVCs.

V. STAAMS Solver for OVCs
In the following, we first explain how the motion model
and the task model are integrated by Connection Vari-
ables into a STAAMS model. The Connection Variables
ensure that assignments in the task model are propagated
to the motion model and vice-versa (cf. Fig. 2). Then, we
explain the horizon estimation for the number of config-
urations in each motion series. Finally, we present our
solver’s search strategy, defined by the variable ordering
and the value selection heuristics.

A. Connection Variables
The Connection Variables link the task model and the
motion model by an index-based mechanism. We create
such a variable Xω,j for each location variable Lj of
every OVC ω. The domain of Xω,j is the index of the
configurations [C1, . . . , Cm] of the motion series σ of the
active component A of ω. An assignment Xω,j = i states
that the ith configuration variable Ci of the motion series
σ of A has to reach to the jth location of ω, formally Ci ∈
λ(Lj). In this way, the Connection Variables establish
the execution order for the OVCs assigned to an active
component. Initially, if A of ω is unconstrained, it is not
defined which motion series the domain of Xω,j refers to.

Connection Variables have the following properties and
are subject to the following constraints:

1) It always is Xω,j < Xω,j+1 since the locations
[L1, . . . , Ll] of ω have to be visited in this order.

2) Yet, two OVCs for the same active component may
be interleaved (e.g., Xω1,1 = 3, Xω2,1 = 4, Xω2,2 =
5, and Xω1,2 = 6) if there is no conflicting inter-OVC
constraint or resource-constraint.

3) Two Connection Variables must never reference the
same configuration variable.

The index-based mechanism of the Connection Variables
couples the task model and the motion model in a very
flexible manner.

B. Horizon estimation
Initially, we do not know the optimal horizon m for
every active component, i.e. the number of configuration



variables. Therefore, we integrate an iterative deepening
approach directly in our model.

For each active component a, we create a constraint
variable H named horizon. We prevent any movements
after the Hth configuration in the motion series of a by
constraining all configurations Ci>H to CH .

Small horizon values generally render the problem
unsatisfiable, while large values bloat the search space
unnecessarily and may cause superfluous motions. A
lower bound for H is the number of all location vari-
ables of the OVCs assigned to the corresponding active
components.
By means of the motion series Σ, the OVCs Ω, the
resources with their interval variables, the Connection
Variables, and the horizon variables, we described all
variables of the CP-based STAAMS model – together
with the corresponding generic and task-specific con-
straints. Next, we discuss how to efficiently search so-
lutions for a given model instance.

C. Search strategy
A constraint satisfaction solver computes one or more
variable assignments that each satisfy all constraints.
Such solvers usually interleave a backtracking search
with constraint propagation. In the backtracking search,
variables are selected according to a variable-ordering
heuristic, and values for the variables are chosen based
on a value-ordering heuristic. Then, it propagates this
decision by checking every constraint involving the se-
lected variable for an effect on other variables and applies
that effect on the possible values of the affected variables,
i.e. it reduces the individual domains of the affected
variables. Once a decision leads to an empty domain, a
previous decision must have rendered the partial assign-
ment infeasible, so the solver backtracks to the previous
decision.

Variable ordering. The Connection Variables con-
stitute a special case in our model. Due to their index-
based mechanism, the constraint information from the
motion model to the task model and vice-versa cannot
be propagated until decisions on the involved Connection
Variables have been made. The Connection Variables,
again, require to first decide on the active component
variables A. These are best decided upon, when the
location variables Li of the OVCs are bound. Therefore,
we use the following variable ordering: (1.) Location vari-
ables, (2.) active component variables, (3.) Connection
Variables, (4.) horizon variables, and then (5.) configu-
rations variables of the motion series. At this stage, only
the the time interval variables of the resources, OVCs
and motion series remain to be decided. As the time
interval variables of the resources are connected to the
OVCs, which in turn are linked with the motion series
by the Connection Variables, the planning system has
to decide about the time-scaling of the motion series.
More precisely, the planning system has to decide about
the waiting times Iw

1 , . . . , I
w
H of each motion series. The

time-scaling has to prevent collisions, resolve resource
conflicts, and satisfy any inter-OVC constraint (e.g. syn-
chronization or ordering). Also, no superfluous waiting
times should be added to optimize the makespan. By
solving this time-scaling problem as final step, we obtain
the timed motion plans for all active components.

Value selection. For each selected variable, the solver
has to assign a value from the variable’s domain. In case
of the Connection Variables (4) and horizon variables
(3), we use a minimum value heuristic to foster short
motion series. For (1), (2), and (5), we use a random value
selection heuristic as there is no clear preference for these
variables. In case of a good value selection, the remaining
search process involves only few backtracks. We employ
a Luby restart strategy (cf. [17]) to avoid long-lasting
searches in the time-scaling step (i.e. in the 6th step).
This is especially useful when poor value selections have
been made in steps (1) to (5).

VI. Evaluation
We implemented our STAAMS model and solver in
Python using the Google Operation Research Tools [8]
and experimented with a KaWaDa Nextage dual-arm
robot in a Gazebo simulation environment [11] on a HP
zBook laptop. We implemented the first and second use-
case given in Sec. III-A. Here, we focus on the sorting
use-case, which resembles the experiment by Kimmel at
al. for their dual-arm coordination algorithm [10], and
compare the results. Afterwards, we show how our solver
scales on instances of this use-case for up to 200 objects.
The modularity of our STAAMS model (cf. Fig. 2)
enables the re-use of tasks expressed as Ordered Visiting
Constraints. To showcase this, we deployed an example
task (taking all objects from a table) on two robotic
platforms by reusing the task model.

Comparison with pure time-scaling. We modeled
three instances of the sorting use case with increasing
number of objects from 12 to 24 and varying degree of
conflict between the two arms (see Fig. 4). Then, we com-
pared our approach against the theoretical lower bound
obtained by ignoring collisions between the manipula-
tors as well as against the method by Kimmel et al.,
which time-scales the trajectories of both manipulators
to prevent collisions. We mimic their solver by using
a randomized but fixed order of collecting the objects
and leave only the scheduling to our solver. The results
are visualized in Fig. 4. The diagrams show plots of the
makespan (as quality measure) over the time spent to
solve the instance (stopped after 100 s) for ten different
fixed order runs (red) and ten runs with order optimiza-
tion (dark-blue). Our solver produces the first solutions
sometimes as fast as in 0.1 s and usually converges within
3 s on the instances shown. By optimizing the order, our
solver consistently outperforms the fixed order runs –
or reaches the same performance in the rare case that
by chance a very good order is selected. Since both
approaches utilize some random decisions, the plotted



.

.

.

a

.

.

b

.

.

c

.

100

.

101

.

102

.
Planning Time [s] (log)

.

40

.

50

.

M
ak
es
pa

n
[s
]

.

100

.

101

.

102

.
Planning Time [s] (log)

.

55

.

60

.

65

.

70

.

100

.

101

.

102

.
Planning Time [s] (log)

.

80

.

100

.

120

.

Random Fixed Order

.

Optimized Order

.

Ignoring Collisions

Fig. 4. Sorting scenarios (a)-(c) and makespan-vs-planning-time plots. Red lines show the makespan over planning time for a random
fixed order of execution (cf. [10]). The blue lines depict the makespan, when we let the solver decide on the order. A lower bound for each
problem – obtained by ignoring collisions (relaxation of the problem) – is plotted in light blue, Blue Objects are dropped into a container
by the left arm at the left destination (green), and vice versa for the red objects. (a) 12 objects with high conflict potential, (b) as (a) but
with eight uncritical objects more to allow for efficient scheduling. (c) A randomly chosen instance with 24 objects and much interaction

20 50 100 150 200
Problem size [parts]

1.0

1.1

1.2

1.3

1.4

N
or

m
.M

ak
es

pa
n First Solution

Budget: 10sec
Budget: 30sec
Budget: 45sec
Budget: 60sec
Best Solution

Fig. 5. In this diagram, the solution quality (makespan) divided
by the lower bound (which ignores collisions between the manipu-
lators) is shown for different problem sizes and different stages in
the search. The vertical lines in the right half of the figure indicate
cases in which no solution was found within the budgets of 10 or
rather 30 sec.

outcomes visualize a distribution. With this in mind, it
becomes very clear that our STAAMS solver provides
much more consistent and higher-quality results. In sce-
nario (b), it gets very close to the theoretical lower bound
(light blue). Interestingly, it takes only 7 s more to handle
eight additional objects in (b) compared to (a).

Scalability. To evaluate the scaling properties of our
approach, we ran a series of 80 experiments similar to
scenario (b) with a time limit of 180 s. Starting from
the twenty parts depicted in Fig. 4 b, we added for
each experiment two extra parts to the scene – one for
each arm – up to 200 parts in total. In Fig. 5, the
normalized makespan, i.e. the makespan divided by the
theoretical lower bound, is plotted over the problem size
for the first solutions, the best solutions, and computing
time budgets from 10 to 60 s. The solution quality for
the first solution ranges approximately from 1.1 to 1.37
normalized makespan,1 which rapidly improves with the
following solutions to finally settle around 1.1 normalized
makespan. Fig. 6 shows for the same set of experiments

1A solution with a normalized makespan of approximately 2 can
always be constructed by only moving one arm at a time.

the computing time over the problem size for the first
solution and the time budgets needed to reach the best
solution quality plus 15 or rather 7.5%. We find the first
solutions for the largest instances in about 25 s, while our
approach converges for normal sized instances in about
1 to 8 s (cf. Fig. 4 b).

Our solver computes high-quality solutions even for
large problem instances in a few seconds or minutes.
Please note that the high scalability compared to ITAMP
planners stems from two facts: First, STAAMS solving
does not require to decide about the actions to be
executed but rather to complete and optimize a given
abstract plan (here modeled by OVCs) only. Second,
in our motion model we limit the motions to stick to
predefined roadmaps.

Portability. Flexibility and portability of our model-
ing language are validated through several experiments
on different simulated robot platforms (seeFig. 7). The
task models, i.e. the sets of OVCs, that have been
used to perform the pallet emptying on the KaWaDa
Nextage and KUKA LBR iiwa platforms2 are identical.
The differences are3: The robot model (Moveit! [19]
robot configuration to access motion planning, kinematic
calculations, and collision checking); a seed robot con-
figuration (as required by the Inverse kinematics (ik)
solvers); a ”tuck” robot configuration (in which the arms
do not obstruct each others workspaces); the names of
kinematic chains, end-effectors, and the base frame; the
static scene collision layout (represented in meshes or
primitive shapes; and the locations of the workpieces.
With this information and scripts in place, our system
automatically creates the roadmaps, collision tables, and

2We like to thank the researchers of the Robotic perception
group (ROP) at the Czech Institute of Informatics, Robotics and
Cybernetics (CIIRC CTU) for providing the KUKA simulation
environment.

3The code and the setup details will be released
on Github until the 31st of October 2018 at
https://github.com/boschresearch/STAAMS-SOLVER
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Fig. 6. The diagram shows the computing time depending on the
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Fig. 7. A task – cleaning up the table – deployed on a KaWaDa
Nextage robot (left) and a pair of KUKA LBR iiwa robots (right).

name-location-configuration mappings.

VII. Conclusion and Future Work

In this paper, we proposed a flexible model and solver
for simultaneous task allocation and motion scheduling
(STAAMS) based on constraint programming (CP) and
constraint optimization for industrial manipulation and
assembly tasks for dual-arm robots4. The core modeling
concepts are Ordered Visiting Constraints and time-
scalable motion series, which are linked by meta CP
variables named Connection Variables. In our evaluation,
we showed that our STAAMS solver quickly completes
and optimizes a given problem model instance – i.e.
an abstract task specifications given as collection of
OVCs for a robot motion model – and delivers high-
quality, executable motion plans. We demonstrated the
scalability of our approach on large problem instances
with up to 200 actions, which were solved in less than
180 s. We also showed, that the OVC concept allows
to transfer a given task model to another robot and/or
workspace by exchanging the relevant motion submodels
only. We assume that our task-centric robot program-
ming approach is suited not only for textual specification
but also for multi-modal input variants. Therefore, we
want to explore robot programming by natural language
and demonstrations.

4The link to the extended version of our video will be available
at https://github.com/boschresearch/STAAMS-SOLVER

To broaden the applicability of this approach, we
plan to include more task primitives (additionally to
reaching goals) like trajectories for welding. We will
also investigate the extension of our approach to include
action models with safe approximations, when the actual
space occupancy and duration are not known, e.g., when
employing force-position control.
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