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Abstract— As human-robot collaboration is becoming more
widespread, there is a need for a more natural way of com-
municating with the robot. This includes combining data from
several modalities together with the context of the situation and
background knowledge. Current approaches to communication
typically rely only on a single modality or are often very
rigid and not robust to missing, misaligned, or noisy data. In
this paper, we propose a novel method that takes inspiration
from sensor fusion approaches to combine uncertain informa-
tion from multiple modalities and enhance it with situational
awareness (e.g., considering object properties or the scene
setup). We first evaluate the proposed solution on simulated
bimodal datasets (gestures and language) and show by several
ablation experiments the importance of various components of
the system and its robustness to noisy, missing, or misaligned
observations. Then we implement and evaluate the model on
the real setup. In human-robot interaction, we have to also
consider if the selected action is probable enough to be executed
or if we should better query humans for clarification. For
these purposes, we enhance our model with adaptive entropy-
based thresholding that detects the appropriate thresholds for
different types of interaction showing similar performance as
fine-tuned fixed thresholds.

Index Terms— Human-robot collaboration, Modality merg-
ing, Scene awareness, Intent recognition

I. INTRODUCTION

Human communication relies on combined information
from several modalities such as vision, language, gestures,
eye gaze, or facial expressions. These individual modalities
support and complement each other, allowing humans to
navigate missing, noisy, or unclear information and detect
misaligned (conflicting) signals. Additionally, humans take
into account the context of the situation and background
knowledge, such as appropriate objects for the given action,
enhancing the efficiency and robustness of communication.

On the contrary, current human-robot interaction setups
usually facilitate rigid communication. They either rely
solely on one modality (e.g., language [1], or gestures [2])
or employ different modalities to specify individual message
components in very strict scenarios. In the second scenario,
language is primarily used to specify the type of action.
Other modalities (e.g., eye-gaze or gestures) may assist in
determining values for individual parameters, such as the
target location (e.g., ”Glue the bolt here”) [3] or other
action-related parameters like direction (e.g., ’Move in this
direction’) or the type of movement [4]).

Despite efforts to merge information from various modali-
ties, existing approaches often do so in a naive manner [5]. To
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Fig. 1. Human-Robot Interaction experimental setup. The user’s speech is
captured by the microphone and the hand is captured by a hand detection
device (e.g. Leap Motion Controller [8]).

foster more natural human-robot collaboration, a more gen-
eral approach is needed to merge information from diverse
data sources and accurately determine human intent. This
approach should be capable of deciding when to be confident
about the detected intent and when to seek clarification or
repetition from the human.

Works in the area of sensor fusion [6], [7] present ap-
proaches for combining uncertain data from various sources.
To be applicable in human-robot interaction scenarios, these
approaches need to be extended to take into account also
feasibility of individual actions and their parameters. This
includes assessing whether the robot can reach or pick up an
object and if the object can serve as a container.

In this paper, we take inspiration from the areas of infor-
mation theory and sensor fusion [9] and propose a merging
algorithm that provides a robust, context-aware solution for
combining information from various modalities (see Fig. 1).
Our approach handles multiple beliefs over possible actions
from different modalities, updating the probability of these
actions and their parameters by simultaneously combining
information and checking the feasibility of the given combi-
nation in the current scenario. Furthermore, we utilize cross-
entropy measures to evaluate the information conveyed in
different modalities and use it to weigh the data sources.

For effective human-robot interaction, it is crucial to
decide whether to execute the most probable action or to
seek clarification or repetition from the user. Executing a
wrongly detected action could lead to significant issues.
Therefore, we propose and statistically evaluate an entropy-
based automated thresholding mechanism to determine the
most appropriate interaction mode in human-robot scenarios.

We evaluate our proposed approach using well-controlled
artificial data from gesture and language modalities, incorpo-
rating varying levels of alignment, noise, scene complexity,
and action types. Some datasets contain data with conflicting



information in both modalities, only resolvable based on
context. Multiple ablation studies highlight the importance
of different parts of the system.

In summary, the main contributions of the paper are:
• A context-aware model for merging data from multiple

modalities that is robust to noisy and misaligned data.
• Enrichment of the model through entropy-based auto-

mated thresholding to decide on the interaction mode
in human-robot scenarios.

• A thorough evaluation of the proposed model on
simulated and real world dual-modality (gestures and
language) datasets with varying complexity, including
several ablation studies.

Datasets, code, and models are on the project site 1.

II. RELATED WORK

Numerous studies have delved into the integration of mul-
tiple modalities, particularly gestures and language, within
the scope of human-robot interaction. However, these efforts
often relegate gestures to a secondary role, where language
primarily dictates the action to be taken and gestures are
used to provide additional details such as trajectory, dis-
tance, movement type [4], or position [3], [10]. Works of
Holzapfel [11] and A. Ekrekli [12] focus on the fusion of
information from pointing gestures and verbal commands
to identify the intended object. Yet, to truly leverage the
knowledge of data available from diverse modalities, it is
desired to value all modalities equally across all aspects
of communication, including action specification. A notable
limitation of current methodologies is their restricted scal-
ability, typically confining to no more than two modalities
and overlooking contextual information.

The task of integrating diverse information sources, in-
cluding vision, language, and gestures, to refine robot con-
trol and decision-making, has been thoroughly surveyed by
P. Atrey [13] in the context of multimedia analysis. In [9],
the authors explore diverse methodologies for integrating
uncertain data, while another study [14] evaluates various
belief conjunction strategies, highlighting their application
in edge cases. Our research intersects significantly with
sensor fusion [15], [6], [7], focusing on fusing inputs from a
range of sensors across different communication modalities.
Yet, our approach diverges by integrating fusion directly
with decision-making processes, dealing with more complex
attributes of the “classes” involved, such as the arity and
properties of actions, or properties of the available objects,
enriching the fusion process. This diverse application of
sensor fusion shares conceptual similarities with its use in
medical image segmentation scenarios [16], underlining the
versatility and challenges of integrating multi-source data.

The final part of our system hinges on its adeptness
at contextualizing within the environment, a capability un-
derpinned by the application of Recursive Bayesian Infer-
ence [17]. This methodology is the key to assimilating
and interpreting varied data streams to deduce the most
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probable outcomes or states. Notably, contemporary research
in this domain frequently focuses on leveraging controllers to
fuse observations—predominantly from joystick maneuvers.
This approach, however, contrasts with our system’s broader
scope, which incorporates a richer array of inputs, including
gestures and verbal commands.

III. PROBLEM FORMULATION

The problem we are solving is to determine the intended
manipulation action and its parameters based on combined
information from different modalities while taking into ac-
count the context of the situation. First, we specify our as-
sumptions and then provide the formulation of the problem.
Human intent. We define human intent I as a triple I =
(ta, to,ap), where ta is the target action (ta ⊂ A, where
A is a set of all available actions), to is a target object to
be manipulated with (to ⊂ O, where O is a set of available
objects) and ap is a list of other auxiliary parameters (e.g.,
storage location/object, distance, etc.). For example, human
intent ”pour the cup to bowl from 5 cm height” can be
expressed as: I = (pour, [cup], [storage = bowl, h=5cm]).
Action parameters. We expect that each action a ∈ A has K
compulsory and L voluntary parameters (K,L ∈ {0, ..., n})
each of them having a given and unique category (we call
this signature of the action). We distinguish, for example,
parameters of the category action Ca, manipulated object
Co, storage object Cs, distance Cd, direction Ca, quantifier
(amount), etc.. One action can contain a maximum of one
parameter of the given category. For example, the above-
mentioned action pour has 2 compulsory parameters (target
object of category Co and container object of category Cs)
and 2 voluntary parameters (height from which to pour of
category Cd and angle under which to pour of category
angle). Considering this, the human intent has to be specified
by at least K + 1 information units (target action and all its
compulsory parameters). Note that it is sufficient to specify
the compulsory parameters only in one of the modalities.
Object features. Let’s suppose that the current scene con-
tains a set of objects Os ⊂ O. Each object o ∈ O has
attributed a list of features Fo (e.g., pickable, container,
full, etc.): Fo = {f1, ..., fF }, where fi ∈ F , F is a set
of all available features. Correspondingly, each action a
has requirements on the features (properties) of the target
object(s) (e.g., pour action might require that to is pickable,
reachable, full and not glued and so (storage object) has
to be reachable and liquid-container). This can be noted as:
(Fto | pour) = f1&f2&f3&¬f6, (Fso | pour) = f1&f4.
Observations from modalities. Let’s suppose we perceived
information from M modalities in the form of sentences
S1, ...,SM . Each sentence is composed of m words wi. For
each of these words we can estimate the probability that
it is carrying information about the parameter of the given
category (i.e., we can estimate values p(C(wi) = Cq),∀Cq ∈
C). Each word wi contains a likelihood vector where each
value provides a likelihood of the given option. For example,
if the user’s intent to perform action wave is expressed via
gesture, then the sentence from gesture modality SG contains
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one word w1 expressed by a likelihood vector with P values:
w1 = (w1

1, ..., w
P
1 ), where wi

1 represents likelihood of the
gesture i (gesture mapped to action i), i.e., wi

1 = l(gi), and
P is the number of available gestures mapped to individual
actions, i.e., P = len{G}. In this case, the highest probability
value will be observed for the gesture mapped to the action
wave (see video and project website for more examples).

Now we can formulate the task as follows:
Problem formulation. Determine the human intent I (i.e.,
the target action ta and its parameters) based on information
received from various modalities in the form of sentences
S1, ...,SM of variable length while taking into account the
set of available objects Os and their features Fo as well
as requirements of individual actions a such as number of
parameters or required features of manipulated objects.

IV. PROPOSED SOLUTION

In this section, we will describe our proposed solution for
the previously formulated problem, i.e., determining intent
based on information from various modalities (see Fig. 1
and for walkthrough example, see Fig. 2).

A. Theoretical background / definitions

We define diagonal cross-entropy DCH as cross-entropy
between a vector of likelihoods l and a set of one-hot vectors
dvj , j ∈ {1, .., N}, where N is the length of l. Each vector
dvj is constructed as follows:

dvj(i) =

{
0 i ̸= j

1 i = j
, i ∈ {1, .., N}. (1)

The vector dvj symbolizes an instance of a probability
distribution over the same elements as in l, where only the
j-th element has a probability 1 and all other elements have
a probability of 0. The DCH is computed as follows:

DCH(l) = h,where

h(j) = H(l,dvj), j ∈ {1, .., N} ,
(2)

where H is the information entropy. h then signifies the
dissimilarity between l and the extreme case where the
corresponding element in l would be detected with absolute
certainty.

B. Assumptions

To simplify the notation without loss of generality, we
assume a one-to-one mapping between action words and
actions). For example, in the case of gestures, we expect to
know the mapping A = MG(Ga) between action gestures
Ga and individual actions A, i.e., gesture gi corresponds
to the action ai. How learn more general mappings from
observations was shown in our previous work [2].

Second, we assume a good synchronization of the data
from different modalities. We expect the sentence of each
modality to have the same length and the words that are
missing in the given modality contain empty vectors (for
example detected from pauses). This assumption is natural,
as in human communication the information is typically
expressed in a synchronized manner over all modalities.
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Fig. 2. Diagram of the proposed model for the case of two modalities
(hand gestures and natural language) specifying action with one parameter
(target object). Heard sentence “Unglue a cup” is correctly resolved into
“Pick a cup” based on a fusion of data from both modalities and task and
scene context”.

C. Merging algorithm

First, we describe the main merging algorithm which is
utilized to merge input data (sentences S1, ...,SM ) from in-
dividual modalities and create the fundamental merged mul-
timodal sentence SM. Assuming synchronized expression of
information across modalities, all sentences share the same
length (n) and i-th words across all modalities correspond.
The words of the merged sentence are determined as follows:

wM
i = ♢M

m=1 (Wm ∗wm
i ) ,∀i ∈ [1, n], (3)

where ♢ represents the mixing operation (we compare
results for maximum, addition, and multiplication, but it
can be also any other operator). The mixing goes over all
available modalities m (M is the total number of modalities),
where Wm is the weight of the modality m, and wm

i is the i-
th word from the sentence Sm. Please note that if information
about the word wi is not expressed in a given modality,
then wm

i is empty and is not considered in the merging. For
example, if we have on the input language sentence ”Give
me cup” and gesture signalizing action ”give me”, then both
sentences have length 2, but the gesture sentence has one
empty word: SL = [wL

1 ,wL
2 ], SG = [wG

1 , []] and merged
sentence is then: SM = [[WL ∗wL

1 ♢WG ∗wG
1 ],WL ∗wL

2 ].
1) Belief adjustment by entropy penalization: We intro-

duce entropy penalization, that determines how unlikely the
measurement of action aj within modality m is a true
measurement rather than noise. To estimate this, we use the
DCH (see Sec. IV-A). In the case of using this penalization,



the Eq. 3 would get one additional weighting term:

wM
i = ♢M

m=1

(
Wm ∗ [

1

DCH(wm)
⊙wm]

)
, ∀i ∈ [1, n], (4)

where ⊙ signs element-wise multiplication.

D. Adjusting sentence for feasibility - selection of action

After generating the merged sentence, the second step
involves determining, which specific action, along with its
corresponding parameters, is most likely expressed by the
human. This step takes into account the observations of the
scene and the human. Initially, we compute likelihoods for
all possible actions and identify the most probable action.

Given that we for each word know the category of the
parameter, we know that target action is expressed by word
wM

Ca
from the merged sentence (computed based on Eq. 3)

and we can compute the likelihood of each action aj ∈ A
as follows:

l(aj) = wM
Ca

(j) ∗ αaj
∗ βaj

, (5)

where the α is the penalization parameter for not fitting
action parameters (see section IV-D.1) and β is the penaliza-
tion parameter for object features that are not satisfied (see
section IV-D.2).

The most probable action aj∗ is then selected by:

j∗ = argmaxj(l(aj)) (6)

We execute this action only if it exceeds the given threshold
and has enough difference from other options (see Sec. IV-F)

1) Penalization for unaligned parameters: Let’s C be the
set of all available parameter types (C = {C1, ..., Cn}).
Given action a has compulsory parameters Cc ⊂ C and
voluntary parameters Cv ⊂ C, A being a penalization
parameter, and that merged sentence SM over all modalities
is containing specification for parameters Cw ⊂ C, we can
compute penalization parameter α as follows:

L =
∑

Cc
i ∈Cc

(1− p(Cc
i ∈ Cw)) +

∑
Ci∈C|Ci /∈Cc,Cv

p(Ci ∈ Cw)

αa = AL

(7)

This means that we increase the penalization for every pa-
rameter that is compulsory and not available in the observed
sentences (first term) and we also increase the penalization
for every parameter that is in the observed sentences but is
neither a compulsory nor voluntary parameter (second term).

2) Penalization for unaligned object properties: The sec-
ond penalization is considering the scene context, i.e., it
penalizes non-aligned object properties in the incoming sen-
tences with the requirements of the action. This penalization
is only applicable for actions that have as a parameter either
a target or storage object. Let’s suppose that action aj has
the following requirements on the target object properties:
{F(to) | aj} = f1&f2&f3&¬f6 (e.g., action pour requires
the manipulated object to be reachable, pickable, full and not
glued). Let’s expect that foi is a vector of likelihoods of given
features for the object oi (i.e., foi

6 = 0.2, means that the
likelihood that object oi is glued is 0.2). The misalignment
fa
k between requirements of action aj on the target object

(fk) and actual property of target object oi (foi
k ) can be then

computed as:

∀k,wherefk ∈ {F(to) | aj} : fa
k = abs(f

oi
k − fk), (8)

For example if foi = (1, 0.8, 1, 0, 1, 0.2), then fa =
(0, 0.2, 0,−,−, 0.2). We compute the final alignment of
object oi with requirements to action aj as A(oi,F(to |
aj) = 1−max(fa) (i.e., in our case A(oi, {F(to) | aj}) =
0.8).

Finally, the penalizing parameter β is computed as follows:

β =max{A(oi,F(to | aj))} ∗max{A(ok,F(so | aj))},
∀oi : wM

Cto (oi) > Tclear, ∀ok : wM
Cso (ok) > Tclear.

(9)

This means that we find maximal alignment among all target
objects whose probability after merging (wM

Cto(oi)) exceeds
the threshold for a clear option Tclear (thresholds are either
fixed or determined automatically based on entropy, see
Sec. IV-F). The same is computed also for storage objects
and these two values are multiplied. This means that there
is a fully fitting target object with enough high probability,
the parameter β is 1 and the action aj is not penalized.
On the contrary, if there is no fitting object among the
object with probability exceeding the threshold, β = 0,
and the action is discarded. Please note, that if the action
has among compulsory parameters only one of the target or
storage objects, the other term is automatically omitted from
the computation. If the action requires neither of them, the
penalization is not considered at all.

E. Selecting other action parameters

When we select the target action aj∗ (see Eq. 6), we still
have to determine its specific parameters. For each of the
parameters required by the action (Cc) we compute argmax
over all the available options exceeding the noise threshold
and parameter value k∗ is selected: ∀Ci ∈ Cc : k∗ =
argmaxk(w

M
Ci

(k)). For example, if the action aj∗ requires
as compulsory parameter target object and if the word
expressing parameter target object (wM

Co
) contains likelihoods

of objects o1 and o4 that exceed the threshold Tclear (see
Sec. IV-F), and l(o4) > l(o1), object ok∗ = o4 will be
selected as the resulting value for target object.

If for some of the parameters, none of the options exceeds
the given threshold, action is not executed and the user
should be prompted for clarification (same as in the case
of unclear information about action).

F. Decision over the actions for interaction mode

We distinguish three types of interaction modes based on
the clarity of the incoming information: i) clear information
– action will be executed, ii) unclear information – action
will not be executed, a user is prompted for more informa-
tion, and iii) noise – command not sufficiently recognized
(user will be asked for repeating the input).

To decide the merged probability of each action which
case it belongs to, we use the following two approaches.



1) Entropy-based threshold: In this approach, we first
compute h = DCH (l)). Then, for each action, we decide:

d (ai)


clear h (i) > tE

unclear tn < h (i) ≦ tE

noise h (i) ≦ tn

(10)

The noise threshold tn is a very small number, which we
based on the evaluation of the real signals set to 0.05. The
threshold tE is computed automatically. We tested two values
for threshold tE . The value tE = H (l) gives reasonably
good results and should work well in general. However, we
found that better results can be achieved if tE is set to the
average entropy of a vector of length equal to len(l), sampled
from a uniform distribution. This can be seen as comparing
against ”a white noise” output from the detector. If there are
multiple clear actions, or if all the actions are unclear, we
query the user for verification.

2) Fixed probability threshold: In this case, we introduce
fixed thresholds tC and tU to classify between noise, unclear,
and clear action.

V. EXPERIMENTAL SETUP

We consider tabletop scenarios overlooked by a Realsense
D455 RGBD camera with a Franka Emika Panda robot
manipulator and objects spawned randomly on the table (see
Fig. 3 (right)). For the real experiment, the positions of the
objects are detected using the attached AruCo markers and
updated in real-time. In both simulated and real experiments,
we considered two input modalities (gestures and language)
for instructions. For the real experiment, gestures are de-
tected using a Leap motion sensor attached to the corner of
the table and recognized using our Gesture toolbox [18] (see
more details in Sec. V-C).

A. Assumptions for the experiment

To be able to focus fully on the evaluation of the context-
aware merging of modalities, we make in our experiment the
following assumptions: 1) we assume that object properties
are just binary values (i.e., object is or isn’t reachable), 2) we
expect to know the category of each word (Sec. IV-D), and 3)
actions have only compulsory and no voluntary parameters.

We used the following settings for our experiments. Pa-
rameter A (Sec. IV-D.1) is set to 0.2, for all experiments.
Fixed thresholds (Sec. IV-F.2) were optimized for the simu-
lated experiment and set to: tC = 0.25 and tU = 0.11.

B. Set of actions and objects

We predefined a set of actions with 0, 1 or 2 compulsory
parameters: 3 actions with no parameter (move up, stop,
release), 3 actions with 1 parameter (pick up X, unglue X,
push X), and 3 actions with 2 parameters (pour A to B, put
A into B, stack A on B). For our experiments, we used the
following set of object and storage properties: F ={glued,
pickable, reachable, stackable, pushable, liquid container,
(basic) container, full-stack, full-liquid, full-container}. Each
action has specified requirements for the target object and
storage object (e.g., pour action requires that the target object

Fig. 3. Real experimental setup. (left) Set of all objects used in the real
experiment. (right) Example of the setup with 3 objects (box, can, and
cleaner) and two storage areas (drawer, bowl) for instructions ”Put the can
into the drawer”. See the attached video and project website1 for more
examples.

is reachable, pickable, full, and not glued and that the storage
object is reachable and liquid-container).

For the simulated experiment, we generate a scene by
distributing on the table a set of 5 random objects and 3
storage objects. Their properties are set according to the
given dataset (see Sec. V-F).

For the real experiment, we used a set of 5 objects (can,
cup, cube, box, and cleaner) and 4 storage objects (drawer,
foam, crackers, and bowl) (see Fig. 3 (left) for the set of all
objects used in the real experiment). For each task, 3 objects
and 2 storage objects are distributed on the table (see Fig. 3
(right) for the real setup example). Each object has some
assigned properties (e.g., liquid-container, pickable, etc.) and
variable properties (e.g., reachable, glued, full-liquid, etc.)
(see our website1 for details). The variable properties of the
objects and storage objects, as well as the corresponding
gesture and language commands, are set according to the
given dataset (see Sec. V-F)).

C. Gesture and language instructions processing

In the real experiment, for gesture detection, we utilized
a Leap Motion sensor attached to the corner of the table,
which captures the bone structure of the hand in real-
time (see Fig. 3 (right)). The data from the Leap Motion
sensor are processed in our Gesture toolbox [18] where
individual gestures are recognized. As described in Sec. V-
B for the real experiment we consider human intent (see
Sec. III) consisting of target action (ta(Ca)) and depending
on the type of the target action optionally also of the target
object (to(Co)) and/or storage object (so(Cs)). The gesture
sentence is recorded while the human holds a hand above
the Leap Motion sensor. Individual gestures (i.e., words of
the gesture sentence) are detected using cumulative evidence
for the given gesture. Detected static and dynamic gestures
are mapped to the 9 target actions used in the experiment. A
pointing gesture activates the detection of target and storage
objects. In this case, probabilities of individual objects are
computed using the distance from the line from the pointing
finger (using the approach described in [19]). A closed hand
separates individual words in the gesture sentence. Moving
the hand away from the detection area finishes and sends
the recorded gesture sentence. Each word, being a vector of
probabilities, is assigned a category (e.g., a pointing gesture
determines category Co). Refer to the attached video and
project website1 for a real demonstration of the gesture setup.



Language instructions in the real setup are transferred
to text, parsed, filtered for filling words and synonyms,
tokenized, and compared to individual language templates
(see the available code at our project website1). The final
language sentence consists of words with one-hot activations.
A constant noise is added to the zero values.

To ensure that the artificial data corresponds well to
the real data, we generate probability vectors (simulating
outcomes from gesture and language inputs) so they respect
similarities observed in real data. To generate likelihoods of
individual gestures in the gesture vector, we sample from
the generated similarity table that has been created based
on the sample dataset of real gesture data collected by
our Gesture toolbox [18]. The similarity for the English
language has been created based on Levenshtein distance
of the phonological transcripts of the used words generated
by the tool Metaphone [20]. See the available code at1.

D. Evaluated models, merge functions and thresholding

In our experiments, we perform ablation studies on the
following models with varying types of penalization, merging
function, and thresholding mechanisms.
Penalization terms. We compare the following basic mod-
els: 1) M1 model: Simple merge without any penalization
term (i.e., Eq. 3) without parameters α and β, 2) M2 model:
introduces penalization α for unaligned parameters (i.e, Eq. 3
without parameter β), and 3) M3 model: a full model that
introduces penalization for both unaligned parameters and
object properties (i.e., the full model described in Sec. IV-C
and in Eq. 3). See overview in Tab. I.
Merge function. We compare models using the following
merge function in Eq. 3: 1) maximum, 2) multiplication, and
3) addition. We refer to the M1 model with max merging
function as a Baseline model.
Thresholding. Finally, we compare 1) entropy-based adap-
tive thresholding vs. 2) fixed thresholds. See an overview of
the compared models and their variants in Tab. I.

TABLE I
ABLATION STUDIES OVER MODELS AND MERGE FUNCTIONS.

Model Merge function Signature Property Thresholding
max mul (·) add (+) pen. (α) pen. (β) Fixed Entropy

Baseline ✓ ✗ ✗ ✗ ✗ ✗ ✗
M1 ✓ ✓ ✓ ✗ ✗ ✓ ✓
M2 ✓ ✓ ✓ ✓ ✗ ✓ ✓
M3 ✓ ✓ ✓ ✓ ✓ ✓ ✓

E. Considered noise levels n

For simulated experiments, we consider five noise levels
(including no noise option) (see Fig. 4) that are added to the
generated datasets (i.e., affecting likelihoods of detections):
1) Zero noise n0 (used as a baseline), 2) Real-data noise
n1: Modeled based on the real data of gesture detections, 3)
Regular noise n2: Artificial noise N (0.0, 0.2) with similar
standard deviation as real-data noise, 4) Amplified noise n3:
Artificial noise N (0.0, 0.4), and 5) - Extreme noise n4:
Artificial noise N (0.0, 0.6).
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Fig. 4. Different levels of noise added to simulated data.

F. Simulated datasets D

For our experiments, we generated the following simulated
datasets, all including data from two modalities (gestures
and language). We consider the following general cases that
typically occur in human communication: 1) Dsim

A : Aligned
dataset with full information available in both modalities
(used as a baseline), 2) Dsim

arity: Non-aligned dataset decisible
based on the signature of the action (i.e., number and type
of the parameters) (e.g., SL = [”pour a cup to bowl”], SG

= [”pour a cup to right”] - feasible action is only ”pour a
cup to bowl” as direction parameter (right) is not a parameter
of action pour), and 3) Dsim

prop: Non-aligned dataset decisible
based on the properties of the objects (e.g., SL = [”pour a cup
to bowl”], SG = [”pour a cup to notebook”], feasible action
is only pouring a cup to bowl, because the notebook is not a
liquid-container). To generate the datasets, we first generate a
random scene and select a random action from the 9 actions
(see Sec. V-B) and its parameters. Afterward, we select al-
ternative actions and/or parameters for the unaligned dataset
and adjust the properties of the objects if necessary (see our
website1 for an example of the generated dataset and the
corresponding code). Finally, probability vectors simulating
outcomes from gesture and language inputs are generated and
additional noise is added optionally (see Sec. V-E. Datasets
Dsim

arity and Dsim
prop highlight the importance of the context

of the situation, they are further combined into a single
unaligned dataset Dsim

U .
To ensure that the artificial data well corresponds to the

real data, we use noise modeled based on the real-data (see
Sec. V-E) and we generate probability vectors (simulating
outcomes from gesture and language inputs) so they respect
similarities observed in real data (see Sec. V-F). To generate
likelihoods of individual gestures in the gesture vector, we
sample from the generated similarity table that has been
created based on the sample dataset of real gesture data
collected by our Gesture toolbox [18]. The similarity for
the English language has been created based on Levenshtein
distance of the phonological transcripts of the used words
generated by the tool Metaphone [20].

In total, by combining 3 types of dataset D and 5 noise
levels n we evaluated our models and different merging
policies on 15 datasets, each of 1000 samples.

G. Real datasets Dreal

We prepared 20 different setups for the real experiments,
each featuring 2-3 objects and 2 storage objects (see an
example in Fig. 3). For each setup, we randomly selected the



target action and corresponding target and storage object (if
required for the given action) from the set of available objects
while considering their fixed properties to ensure the target
action’s feasibility. Subsequently, we set variable properties
of the objects (e.g., reachability) so that the target action
remained feasible. The properties of other objects were set so
that the target action was infeasible on them. Based on this,
we prepared for each setup a corresponding valid instruction
sentence expressing human intent (e.g., Put can to drawer).
For each of these setups, we also prepared an alternative
instruction sentence with an unfeasible target action, which
could be determined as false in half of the cases based on the
signature of the action, i.e., type and a number of parameters
(e.g., Pick the can in the drawer, where pick has only one
compulsory parameter) and in the other half based on the
properties of the objects (e.g., Pour the can in the drawer,
where the drawer is not a liquid container, so the can not
be poured into it). We also prepared a second alternative
sentence with a valid target action, but a different target
object for which the target action is infeasible (e.g., Put box
into the drawer, where the box is glued and thus cannot
be picked up). Please refer to our project website1 to view
all the prepared setups, corresponding object properties, and
instruction sentences.

Given these setups, we recorded the following datasets:
1) Dreal

A : Aligned dataset with the same instructions
given by both gestures and language, i.e., the user atempts
to convey the valid instruction both through gestures and
language. This dataset consisted of 20 samples (one sample
for each of the setups) for each user, i.e., 60 samples in total.

2) Dreal
U : Nonaligned dataset with a mismatch between the

target action or objects in language and gesture instructions.
The correct action and object can be determined either based
on the properties of the object or by number and type of
action parameters. For each of the 20 setups, we recorded
4 samples (i.e., each of the two alternative instructions was
given either by language or gestures, while the other modality
gave the valid instruction). This dataset consisted of 80
samples for each user, i.e., 240 samples in total.

VI. EXPERIMENTAL RESULTS

First, we perform an ablation study (Sec. VI-A) to show
the importance of different parts of our proposed system.
Secondly, we study the effect of different noise levels
(Sec. VI-B), different merging methods, and thresholding
approaches (Sec. VI-C) on the model performance. We show
the results both for the simulated setup and for the real
datasets, where 3 participants tested the proposed system.

A. Ablation study

The first experiment compares models M1, M2, and M3

(see Sec. V-D with the baseline method and shows the effect
of individual components of the proposed model M3. For this
comparison of models we used mul merging function, real
added noise (nreal), and entropy thresholding. In Fig. 5 we
can see that for the aligned datasets (Dsim

A and Dreal
A ) all the

models M1-M3 perform very well (M3 still outperforming
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Fig. 5. Ablation study shows perfomance of the proposed model (M3)
compared to models without individual penalization functions (M2, M1)
and towards the baseline. The baseline corresponds to the merging of
modalities by argmax function without any penalization terms. The results
are shown for aligned (Dsim

A ) and unaligned (Dsim
U ) simulated datasets as

well as on the real datasets (Dreal
A , Dreal

U ). Models M1, M2, and M3

used add merging function and entropy thresholding. Real noise nreal
1 was

added to both simulated datasets.

the other ones), showing ability to deal with this level
of noise thanks to merging function. On the contrary, the
baseline method that uses argmax to merge data from gesture
and language already drops the performance only to 42.6%,
resp. 45.8%. In the unaligned datasets, where more context
is needed for deciding on the intended action, we can see
a significant accuracy drop for all models apart from model
M3, underlining the importance of individual components
of the model in the case of noisy and misaligned inputs
from different modalities. Similar performance, as well as
accuracy drop, can be observed both for simulated and real
data.
B. Noise influence

The second experiment shows noise influence (Sec. V-
E) on all models (Baseline, M1, M2, and M3) with the
best-performing merging settings (Merge function: add) and
entropy thresholding, see Fig. 6. Overall, we can see that the
model M3 is very robust to the noise, showing only a small
decrease in accuracy with the increased noise. Furthermore,
we can see for the model M3 similar performance for the
unaligned dataset. The real dataset included several samples
with missing information in some of the modalities, however,
the system correctly inferred in all of the cases the resulting
action.
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Fig. 6. Accuracy scores on different noise levels (n0,1,2,3,4) for aligned
and unaligned simulated datasets (Dsim

A Dsim
U ) for individual models.

Results are shown for add merging function and entropy thresholding.

C. Evaluation of merging approaches

Finally, we evaluate different merging approaches, i.e.
max, mul, and add (see Tab. I) for the full model M3 with
both penalization terms. In Fig. 7 we show the robustness of



the approaches towards the noise. You can see that for the
zero and low noise (n0, nreal

1 , and n2), both mul and add
perform similarly, outperforming significantly max function.
However, for higher noises add outperforms the mul merging
approach. In other words, that add merging function is more
robust towards the noise.

Fig. 7. The plot shows accuracy scores
on different noise levels (n0,1,2,3,4) for
aligned simulated datasets (Dsim

A ) for
individual models. Results are shown
for add merging function and entropy
thresholding. nreal
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D. Evaluation of thresholding approaches

Finally, we evaluate fixed vs. entropy thresholding. We
compare fixed thresholding which had thresholds manually
tuned in the simulated environment with adaptive entropy
thresholding. As expected, in simulation the fixed thresh-
olding outperforms entropy thresholding, however, the dif-
ference is rather small (see Fig. 8, addfixed vs. addentropy
for Dsim

A , Dsim
U ). However, when the same fixed thresholds

tuned for simulation were used in the real setup, the entropy
thresholding already outperformed the fixed thresholding.
This underlines the benefits of adaptive entropy thresholding,
which can work well under different conditions such as
different users, or tasks without manual tuning of thresholds.
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Fig. 8. Thresholding approaches. Comparison of performance of fixed vs.
entropy thresholding on both simulated (with noise n3) and real datasets
for model M3.

VII. CONCLUSION

In this paper, we proposed an approach for context-
based merging of multiple modalities for robust human-robot
interaction. Firstly, we evaluated the proposed method on
several artificially generated bimodal datasets (however the
method itself is not restricted to two modalities) with a
controlled amount of noise, as well as misalignment between
data from different modalities. We show that the proposed
model that takes into account the parameters of the actions
and object properties is significantly more robust towards the
added noise (reaching almost 76% accuracy for highest noise,
while the model M1 which does not consider the context of
the situation reaches only 24.3% accuracy) (see Fig 6).

Secondly, we evaluated the method on the real setup and
performed a user study with 3 participants, each performing
100 tasks in different experimental setups. The experiment
contained tasks where commands from both modalities were
aligned as well as tasks where one modality was providing
misleading information and the system had to resolve the

ambiguity by taking into account context of the situation.
This experiment enabled us to also validate our simulated
experiments. As can be seen in Fig. 5 the results on the real
dataset are similar to the simulated ones both for aligned and
unaligned datasets.

Finally, we introduce an adaptive entropy-based threshold-
ing method that enables automatic detection of thresholds
between various interaction modes (i.e., detecting when to
execute the action and when to query the user), yielding
similar accuracy as the fixed thresholds in the simulation
and better performance for the real setup (see Fig. 8). This
enables easy adaptation of the method to new environments
and scenarios, without the need for manually tuning and
setting the thresholds.
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