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Abstract— Multi-modal robot programming with natural lan-
guage and demonstration is a promising technique for efficient
teaching of manipulation tasks in industrial environments. In
particular with modern dual-arm robots, which are designed
to quickly take over tasks at typical industrial workplaces, the
direct teaching of task sequences hardly utilizes the robots’
capabilities. We therefore propose a two-staged approach that
combines linguistic instructions and demonstration with si-
multaneous task allocation and motion scheduling. Instead of
providing a task description and demonstration that is replayed
to a large extent, the user describes tasks to be scheduled
with all relevant constraints and demonstrates relevant loca-
tions and storages relative to workpieces and other objects.
Constraint optimization is used to schedule task and motion
sequences to minimize the makespan. Naming and grouping
enables systematic reuse of sub-tasks ensembles and referencing
of relevant locations. The proposed approach can generalize
between different workspaces and is evaluated with gluing
showcases from furniture assembly.

Index Terms— learning from demonstration, dual arm ma-
nipulation, multi-modal robot programming, task scheduling

I. INTRODUCTION
Although today’s production plants and shop floors are
unimaginable without robots, programming them is still a
complex, time-consuming task. We believe, this complexity
stems from the large variety of different domains a robotic
program must govern. Deliberation, kinematics, collision-
avoidance and coordination, geometry, and perception are
very different in their nature and are per se challenging to
formulate for humans, because we handle many of these
topics subconsciously. One approach to take the mental
burden from the instructor, is to tap into that resource by
employing multi-modal specification methods. Sequencing
and naming of subtasks can be easily expressed in natural
language, geometric concepts like poses and paths can be
demonstrated using pointing-devices or gestures, whereas
force-torque controllers can be best trained by physical
demonstrations with suitable devices [1].

As example showcases, we use tasks inspired by furniture
assembly. The showcases consist of actions like applying
glue or picking bolts and inserting them in holes in a
board (see Fig. 1, left), which are preparation steps for the
final assembly. As in typical instruction booklets, different
constraints on the action execution are given: The step-by-
step instruction induces a partial ordering on the execution,
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e.g. glue has to be applied before a bolt is placed, but
leaves open in which order unrelated actions have to happen,
e.g. the order of bolts to insert, and even which bolt is
inserted into which hole. The optimal robot program for
these tasks is highly dependent on the actual setup of the
robot workspace, which can be subject to regular change, the
robot’s kinematics, and the evolving task definition. Using
planning and scheduling techniques has the advantage of
yielding high-quality solutions which can easily adapt to a
variance in the mentioned parameters.

Especially in the case of dual-arm robots, the user is often
not able to specify the optimal task execution. Next to the
works about manipulation planning (e.g., [2]), also dual-arm
motion scheduling is an active field of research [3], [4].

We designed a system that allows the user to descrip-
tively define task scheduling problems by demonstration
and linguistic input. Natural language is used to define and
add sub-tasks, locations of these sub-tasks as well as to
add constraints on them. We employ a custom context-free
grammar which enables the definition of new actions and
hierarchical action compositions. The demonstration of the
action in parallel with natural language instructions enables
the parametrization of sub-tasks by key words, e.g. the
word here references a demonstrated location relative to the
workpiece. Linguistic constructs like first-then are used to
constrain on the order of the subtasks.

Then, we employ our simultaneous task allocation and
motion scheduling (STAAMS) solver [5]1 to deploy the
task to the robot’s resources and optimize the execution for
efficiency. This solver’s task modeling abstraction Ordered
Visiting Constraints (OVCs) can be used to represent a wide
range of industrial task and motion scheduling problems
in an effective and robot-agnostic way. An OVC models a
sequence of actions to be executed at different – possibly
variable – locations by a manipulator. Ordering and temporal
constraints within and between OVCs allow to take depen-
dencies between the different actions into account as well as
to synchronize them. By utilizing the remaining degrees of
freedom in the task execution, idle times of the manipulators
can be avoided and thus the makespan, i.e. the execution
time, often can be significantly reduced.

The remainder of this paper is organized as follows:
We discuss related work in Section II, before we briefly
explain the OVC formalism and the corresponding planner
in Section III. In Section IV, we describe an OVC-based

1manuscript available on the web page associated with this paper: http:
//imitrob.ciirc.cvut.cz/planning.html
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Fig. 1. Overview of the whole system.

task scheduling problem specification which is obtained
from natural language and demonstrations, with all relevant
details on language processing, simultaneous identification of
locations, teach-in of individual tasks and task templates and
linguistic specification of constraints. The implementation
and setup of our system is described in Section V, followed
by experimental results in Section VI. Finally, the paper is
concluded in Section VII with a summary and outlook.

II. RELATED WORK

This work is related to two (heavily overlapping) fields:
robot learning from demonstration and multi-modal robot
programming.

Robot learning from demonstration can roughly be divided
into learning of individual motions and skills versus learning
of complex tasks. Important works in the field of motion and
skill learning are [6], [7], [8]. Works on learning of complex
tasks focus on automated segmentation (e.g., [9], [10], [11]).
For example, Jenkins and Mataric [12] focused on finding
repetitive patterns in the data (motion primitives) using a
dimensionality reduction via a spatiotemporal isomap.

In the approach proposed in this paper, we assume a
predefined, extendible set of primitive actions. Motion and
skill learning is an effective technique for teaching new
actions and therefore considered as an important foundation.
However, regarding the high-level tasks we aim at explicit
task and motion planning to use the full capacity of dual-arm
robots, as argued in the previous section. Therefore, learning-
based methods that generalize from demonstrations are not
appropriate.

In the field of multi-modal robot programming for ma-
nipulation, most works aim at obtaining task descriptions
for natural language combined with pointing or teach-in
techniques. For example, in an early work in 1996, Hwang
et al. [13] proposed a comprehensive system for specifying
a hierarchical task decomposition by natural language using
a fixed grammar. At the same time, the system allows to
teach primitive actions and the corresponding poses [14].
On contrary, our custom grammar allows a huge variability
in linguistic instructions. Furthermore, we allow interleaved
learning of templated actions, which can be directly reused
after specification. In the PRACE project, an extension to

ABB Robot Studio has been developed that allows to specify
a task skeleton – an assembly graph – in natural language,
which can then be refined using the graphical programming
interface [15]. In [16], Mohseni-Kabir et al. presented an
interactive system for specifying hierarchical task networks
(HTNs) for manipulation tasks. The user can explain the
tasks in a top-down manner and the system asks him/her
for task names that are unknown to it as well whether it
should generalize tasks to other objects of the same type in
the scene. A similar approach based on behavior networks
instead of HTNs is presented by Rybski et al. in [17]. In
contrast to our approach, the demonstrated order of subtasks
is strictly replicated, which neglects the chance to optimize
the order of the subtasks. Also they do not show, how
ordering constraints on individual subtasks could be specified
via spoken language.

Only a small body of works considers the multi-modal
input of task scheduling problems. Kirk et.al [18] use natural
language to define goals of diverse tasks and explore teaching
goals and how agents can afterwards utilize these as strate-
gies. The system was tested on simple riddles and games.
No motion planning on top of the provided constraints was
performed. In [19], Ekvall and Kragic proposed a robot
learning system that uses a STRIPS-like planner whose input
is obtained from imitation learning and a dialogue-based
approach that allows the teacher to add constraints while
demonstrating the task. In the implementation, the constraints
were hard-coded in the planner. Also, path planning was not
integrated with task planning as in our approach. Suddrey et
al. propose a similar approach based on the HTN planning
in [20]. Their system uses the OpenCCG parser for natural
language processing of the user’s explanation of the task
decomposition. The system asks for the specification of
unknown subtasks in a dialogue-based manner. Grounding
of arguments is performed by transforming each argument
into a first-order logic query and matching it against the
perceived world model. Preconditions from the primitive
tasks are propagated along the task hierarchy, but there
is no support for natural-language-based input of further
constraints. Again, motion planning is not integrated with
task planning.

Unlike the last mentioned works, the system presented in
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this paper allows to easily specify advanced task scheduling
problems for dual-arm manipulation tasks, including tempo-
ral and causal constraints amongst others and directly transfer
them to the robotic environment. The proposed planning
approach based on constraint optimization, deeply integrates
task allocation and motion scheduling to solve the problems
efficiently.

III. ORDERED VISITING CONSTRAINTS FOR
SIMULTANEOUS TASK ALLOCATION AND MOTION

SCHEDULING

In this section, we first introduce the OVC model and solver
as a tool for the simultaneous task allocation and motion
scheduling (STAAMS) problems in dual-arm manipulation
settings. In the second part of this section, we describe the
modeling with OVCs in further detail and explain selected
constraint types for advanced manipulation planning prob-
lems.

A. OVC Model and Solver

Simultaneous task and motion scheduling is concerned with
scheduling and allocating high-level actions, while taking
constraints on the motion level like collisions, robot kinemat-
ics, and joint limits into account simultaneously. As a result
stands a time-scaled trajectory for every robot arm that does
not violate any constraints and reaches the set task goal. Our
solver (cf. Fig. 2) is based on constraint programming (pro-
grammatically utilizing Constraint Satisfaction Problems). A
Constraint Satisfaction Problem (CSP) is generally specified
by a triple (X,D,C), where X is a set of variables, D a
set of domains, and C a set of constraints. The solution
of a CSP is a complete assignment of values to variables
that satisfies all constraints C. To find such a solution, the
underlying solver performs a backtracking search over the
variables with suitable value selection heuristics. For the
subsequent optimization of the makespan, a series of CSPs
with additional constraints tend ≤ ci, where ci+1 < ci,
is solved. Our solver supports the definition of tasks by
an abstraction called Ordered Visiting Constraints (OVC),
which are defined by tuples

ω = (A, [P1, ..., Pl], [L1, ..., Ll], [I1, ..., Il], Cintra). (1)

An OVC ω models a sequence of actions to be executed
at different locations by a manipulator. A is a variable
representing the active component, i.e. a manipulator. The
Pi define the action type, e.g. applying glue or picking up
an object, to execute at the end-effector locations, i.e. 6-
DoF poses, denominated by the variables Li. The Ii are
time interval variables (with variables for start time, end
time and duration) modeling the time windows for the action
execution. Cintra is a set of constraints to model arbitrary
relations between OVC interval variables.

The robot’s motions are represented as a series of n joint
configurations, n intervals modeling the time spent in these
configurations, and n − 1 intervals modeling the traveling
time between the configurations. Precomputed roadmaps
[21] are used to discretize the configuration space per arm

(see Fig. 2 right). Therefore, the domain of the configuration
variables is the set of all roadmap nodes of the corresponding
arm. Path planning is performed by graph search on these
roadmaps. A collision table lists all pairs of roadmap nodes
of the two arms that preclude each other, which is used to
cast disjunctive constraints on conflicting time intervals.

B. Modeling with OVCs

OVCs provide a lot of modeling flexibility as the robot
arms, the locations to visit and their order are modeled by
CSP variables and very generic constraints among them.
Similarly, constraints between OVCs may be defined using
propositional logic, Allen’s interval algebra, and set-theoretic
expressions.

Programming a task with OVCs means to create for each
segmentable subtask or series of subtasks an OVC and
constrain its variables. To create an OVC, we need the set of
arms that should be considered to execute the subtasks (e.g.,
because they have the required tool for the task mounted) and
which actions should be executed. Then, a set of locations
per Li is used to constrain location variables. Lastly, we
have lower and upper bounds on the action durations and the
action type for every action. In Eq. 2, an exemplary function
call to create an OVC for a pick-and-place task is presented.

addOVC((r1, r2), (pick, place), ((loc23, loc17), (loc2)),
((2.0, 7.0), (1.5, 10.0)))

(2)

Here, a pick action shall be performed either at loc23 or
at loc17 and a place action at location loc2. As OVCs
provide the flexibility to specify a set of possible locations
for a location variable, we can – in the case that multiple
equivalent pieces to be picked are available – leave the final
assignment to the solver. To relate multiple OVCs, various
constraints can be added. For example, the interval relation

addOvcCt(StartsAfterEnd, (OVCi,OVCj)) (3)

can be used to prescribe an order among two OVCs. Yet, it
is also possible to synchronize two OVCs for different arms
to perform a joint action with both arms. In this manner, the
task model (see upper half in Fig. 2, left) is declared.

IV. SPECIFYING OVC SCHEDULING PROBLEMS BY
LINGUISTIC INPUT AND DEMONSTRATION

In our system, the set of OVCs for a specific use-case
– and thus scheduling problem – is specified using natural
language and simultaneous demonstration. From the natural
language input, we extract action types and constraints to
subsequently transform them to an OVC task definition. To
process linguistic input we make use of a custom context-
free grammar. The grammar contains production rules (see
Fig. 3) for multiple syntactic categories (e.g., noun phrases,
verb phrases, prepositions, constraint relations, etc.). We
first parse each sentence using a recursive descent parser
to retain the tree structure and abstract meaning of the
sentence according to the production rules of the grammar.
By analysis on this tree, we extract information about tasks
and constraints (e.g., temporal constraints, temporal intervals,
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Fig. 2. CP model for task and motion scheduling (top) and simulated robot
setup of two kuka iiwa arms. A roadmap of one robot is displayed (bottom).

types of actions, etc.). Each sentence can be: (1.) a definition
of new task template (AG), (2.) a definition of locations (a
storage (HS)), (3.) a grouped task (GO), or (4.) multiple
grouped tasks joined by relations (e.g., first, then, before,
after). Relations (REL) can contain additional temporal con-
straints (e.g., within 5 seconds). Using relations we extract
relevant ordering constraints. Task templates are defined in a
hierarchical way so they can cover either an unordered set of
subtasks, or ordered set of subtasks joined by relations. Each
of the individual task (O) is describing a task performed in a
given location with the possibility of adding time constraints
on the length of the task.

A. Locations

Locations are 6-DoF poses of an appropriate end-effector in
the reference system of the workpiece. Their unique names
are either given during the linguistic instructions or created
automatically, when no name is provided. Locations can be
added to the system in two ways: First, by implicit definition
during task demonstration using a location denominator like
here. For example, the instruction ”Glue a point here” will
lead to adding a location with values extracted from the
current glue gun pose. Implicit poses are stored relative to
the workpiece. Second, locations can be added by explicit

Fig. 3. A sample of our custom grammar including multiple production
rules.

definition for later use. It is possible to define reference
frames during the location definition to enable different
arrangements of parts in the final robot setup.

Definition: A Storage S is a set of locations with its
own origin (frame). Individual locations l ∈ S are obtained
from demonstration. The name of the storage is defined
in the corresponding utterance after the keyword showing.
The origin o of the coordinate system is evaluated from n
edge points (ei) coordinates which are also extracted from
demonstration: o =

∑n
1 ei/n.

The corresponding utterance in natural language is:
”Showing [Small bolt storage] corner [here] corner [here]...
location [here] location [here]...”

All locations (L) and storages (S) are stored in dictionaries
with a unique names as key. This allows later referencing to
the locations and storages using their names. Additionally,
we use a last-in-first-out data structure to track the order of
added locations. This enables for example linguistic refer-
ences to previously added locations without knowing their
name like ”First glue a point [here] and then place a bolt to
[the same location]” leads to the creation of a location loc1,
which is, after the insertion in our bookkeeping, recalled for a
place action by using the order of insertion. Future references
to locations and storages are more naturally performed using
the name – e.g. ”Pick a bolt from the small bolt storage”
corresponds to the action pick(bolt, l) (see Section IV-B)
which can be executed on any location l ∈ Si, where Si

represents a small bolt storage.

B. Teach-in of new tasks

The system allows teaching of two types of tasks:
1. Simple task: A task a is a tuple: a = (name, type, object,

location, time constraint), where name is a unique name of
the task, type represents an action primitive or a simple/single
task such as {glue, pick, place, make, ...} , object ∈ {ADJ
+ [point, it, bolt,...]}, location ∈ L and time constraints
T = (min,max). The utterance describing a task has
the following format ”<Type><Object><Location><Time
constraints>” (e.g., ”Glue a small bolt here within 5 sec-
onds” or ”Pick up a big bolt from the big bolt storage.”),
see Fig. 4. Each single task or a sequence of tasks which
requires to be performed by the same resource (e.g., a Pick
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and Place action) is represented by a single OVC (see Eq. 1).

Fig. 4. A simple task: gluing a point in a given location.

2. Task template: A task template AG is a set of OVCs
and constraints saved as a template for future reuse. The
creation of such a template is triggered whenever a set of
demonstrated tasks (e.g., ”Glue a point here then pick up
a small bolt from a small bolt storage and place it to the
same location.”) is followed by (”This task is called [glue a
small bolt]”). After the task template is created and its name
registered to the system, it can be reused by using its name
in the same way as a simple types of tasks (e.g. ”First [glue
a small bolt] then glue a point here.”) (see Fig. 6 and Fig. 7).
When the task is reused, the template is copied, filled with
the location parameters from the current demonstration, and
appended to the task description.

C. Ordering and Temporal constraints

Our system supports voice entry for ordering constraints
(Allen interval relations) of OVCs as well as quantitative
temporal constraints between OVCs. (Note that the actions
within an OVC are always sequentially ordered.)
1. Inter-OVC ordering constraint: Ordering constraints are
indicated in the abstract representation of a sentence by a
subtree ’REL’ (REL = {first, then, before, after}) or ’RELP’
(RELP = <REL><Time constraint>). An example is: ”First
glue a point [here] then within 5 seconds first glue a point
[here] then pick a small bolt and place it to the same loca-
tion.” These constraints are transfered to the OVC planner as
a set of StartsAfterEnd Constraint (see Eq. 3 and Section VI-
A). As can be seen, our system can also handle nested (addi-
tional constraints within an already open constraint) and join
ordering constraints. A join constraint First [X] then [Y] then
[Z] (e.g., First glue a big bolt [here] then glue a small bolt
[here] then make a point [here].”) is transfered to two Start-
sAfterEnd constraint: StartsAfterEnd(OV C1, OV C2) and
StartsAfterEnd(OV C2, OV C3), where OV C1, OV C2 and
OV C3 correspond to task X, Y and Z, respectively.
2. Intra-OVC ordering constraint: The constraint on order-
ing of two or more successive tasks that must be processed
by the same resource (typical example is Pick and Place,
where pick task induces that place task of the same object
will be performed with the same resource, creating an OVC
of two consequence locations). An example is a sentence
”First pick a bolt from [L] and then place it to [L].”, which
will be represented as an OVC shown in Eq. 2). Please note,
that location L can correspond to a single location as well
as to a set of possible locations (e.g., a storage).

1. Intra-OVC temporal constraints: Time constraint cor-
responding to parameter I in an OVC (see Eq. 1) defining
a maximum length of the action (e.g., gluing a point has to
be performed in approximately 2 seconds to apply a correct
amount of glue). These are indicated within an action as an
optional time constraint - e.g., ”Glue a point [here] for 2
seconds.” (resulting range for I will be (2-x, 2+x)).
2. Inter-OVC temporal constraints: These constraints are
in the sentence indicated as an additional time parameter
within a relation ’RELP’ and is passed to the OVC planner
as a parameter T in StartsAfterEnd constraint (see Eq. 3)
(e.g., ”First pick a small bolt then within 5 seconds place a
big bolt.”).

D. Further Editing of OVC-based Scheduling Problem Spec-
ifications

Linguistic instructions from the input are processed to retain
a list of named locations, a list of named storages, a list of
named task templates, a named list of OVCs, and a list of
temporal constraints. The algorithm’s output is tailored for
the OVC-solver, but is also saved as a formatted text file2.
This file is parsed by the solver. Before that, advanced users
can edit this file to add further or more complex constraints,
which were impossible to explain by natural language.

V. IMPLEMENTATION AND SETUP

Fig. 1 gives an overview of the whole system. As the OVC
planner has been described in Section 3 already, we focus in
this section on the acquisition of voice and demonstration
data, its processing and the extraction of OVCs, and the
execution of the task and motion plan (currently simulated).

A. Setup for data acquisition

The setup consists of a table top with a calibration
checkerboard, two Asus Xtion 3D sensors, an HTC Vive
VR set, and a microphone for audio recording. The data
from all sensors are broadcasted via the Robot Operating
System3 (ROS). The HTC Vive supplies the 6DOF positions
of the two controllers at 60 Hz, both Asus Xtion cameras
produce 640x400 RGBD images at 30 Hz. To capture
the demonstration of the gluing tasks, one of the HTC
Vive controller is attached to a gluegun, while the second
HTC Vive controller is used to indicate the ground truth
segmentation of the demonstrated tasks. In the experiments,
we assumed the workpiece to be fixed to the checkerboard,
but in order to define auxiliary coordinate frames, we
included special language commands and demonstrations.
All sensor data is synchronized using ROS timestamps.

For each showcase (see Section VI), a separate data file
(ROS bag file) is recorded. Besides the timestamped RGBD
data from the ASUS Xtion and the 6DOF poses from the
HTC Vive controller, each bag file contains the button press
information for both HTC Vive controllers, speech-to-text

2see our web page http://imitrob.ciirc.cvut.cz/
planning.html

3http://www.ros.org/
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transcripts acquired through Google Speech API and the
transformations between the individual coordinate frames.
Although, the captured motions are synchronized with the
recorded speech. the human demonstration is likely to be
not perfect, i.e. the demonstration of a task will not appear
in the exact same time as the key word in the linguistic
input. Hence, our system matches the demonstrations with
the closest appearance of a location keyword. As ground
truth, the pose of the glue application is recorded based on
the glue gun button press. For each showcase we further
provide sentence-wise separated bag files with a checked
transcript. 4 To process linguistic input we make use of
the Python library NLTK 3.3 (Natural language processing
toolkit) [22].

B. Setup for simulation-based execution
We consider a setup consisting of two KUKA LBR
iiwa robots mounted on a table with largely overlapping
workspaces (see Fig. 2). While we evaluate this paper in sim-
ulation, we have the real robotic system available for future
experiments. The robots are simulated and visualized using
ROS and RVIZ. The OVC solver uses services provided by
MoveIt! to make kinematic queries, collision checks, and
path planning, but since the planner outputs a trajectory for
every arm, the execution of plans is implemented using the
follow joint trajectory action.
The setup of the two arms is defined in an URDF file. In
the simulation, we add the workpiece and storage frames for
the task using a Scene Graph Manager. In a real-robot setup,
the user would place the parts (i.e. storages and workpieces)
directly in the robot’s workspace. Their reference frames
might be detected e.g. by a on-top 3D sensor.

VI. EXPERIMENTAL RESULTS

As evaluation, we created four showcases (see Fig. 5) and
programmed them using our system. For the first showcase,
we demonstrated applying glue to several locations, while
explaining what should be done. The second showcase con-
tains the same tasks as the first one, but the language provides
a number of constraints on the execution order of individual
tasks and on groups of tasks. Showcase three illustrates
the creation of task templates, teaching separate reference
frames, and pick&place actions. Showcase four is similar to
showcase three, but features some ordering constraints5. In
the following, we explain a typical OVC representation of a
showcase, discuss the transfer to different workspaces, and
finally visualize the solver performance on our showcases.

We show, that the solver finds and optimizes solutions to
the modeled tasks and show some statistics of the solutions.
In the second part of this section, we discuss the intermediate
task description, which is the planner input, but is also ad-
justable by expert users to incorporate advanced constraints
or correct mistakes in the extracted task specification.

4see our web page http://imitrob.ciirc.cvut.cz/
planning.html for source bag files

5Please, see the attached video for a visual demo of our system. Video
can also be downloaded from our web page http://imitrob.ciirc.
cvut.cz/planning.html.

A. OVC problem representation example

Type of the task: Group of ordered simple tasks and tasks
templates a1, ..., an
Sentence: First glue a small bolt here [showing loca-
tion/pose] and then within 20 seconds make a point here
[showing location] and then make a point here [showing
location] in 2 seconds.

OVC representation:

O1 = [[LA,RA], (gluepoint), [loc11]]

O2 = [[LA,RA], (pick, place), [[loc5, ..., loc10], loc11]]

O3 = [[LA,RA], (gluepoint), [loc12], (1.7, 2.3)]

StartsAfterEnd(O1, O2)

StartsAfterEnd([O1, O2], 20)

L = {’loc1’ : poseStamped, ..., ’loc12’ : poseStamped}
HS = {’small bolt storage’ :

{corners = [loc1, ..., loc4],

locations = [loc5, ..., loc10]}}
AG = {’glue a small bolt’ :

[Ot, Ot+1], StartsAfterEnd(Ot, Ot+1)}
L - location dictionary
HS - storage dictionary
AG - tasks templates dictionary

Fig. 6. A task template ”Glue a small bolt” described by a sentence ”First
glue a point here then pick a bolt from a small bolt storage then place it to
the same location”.

Fig. 7. Resulting tree (abstract representation of sentence) gained from
parsing the sentence ”First glue a small bolt here then within 5 seconds
make a point here then make a point here in 2 seconds.” (for tree of the
task template ”glue a small bolt” see Fig. 6).

B. Transfer to different workspaces

The demonstration of the tasks is generally not executed in
the robot’s workspace and should be transferable to other
workspaces. To solve and execute a previously given task
with a robot on a different workplace setup, the reference
frames of the workpieces and storages have to be detected
(e.g., by a RGBD sensor overlooking the workspace) or
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a) b) c) d)

Fig. 5. Showcases: (a) demonstration and (b) abstract visualizations of showcase 2 and (c,d) showcase 4: Showcase 2 is a partially ordered set of point
tasks (gluing a point), Showcase 4 represents a partially ordered set of ’gluing a point’ tasks, ’gluing a small bolt’ task (green circle) and ’gluing a big
bolt’ task(orange squares). The task templates ’gluing a small bolt’ is visualised in Fig. 6.

Fig. 8. Makespan vs. solving time for showcase 1 (gluing action in given
locations) and showcase 2 (showcase 1 with additional ordering constraints).

defined manually. If a different robot should perform the
task, we need to make sure, that the robot’s capabilities
(i.e. actions each arm can execute) are included in the
configuration file. Subsequently, the roadmaps used in the
OVC-solver are updated to include the task locations.

C. Experiments

For each showcase, we let the solver run for 500 s. The solver
finds solutions of decreasing makespan through changing the
assignment of subtasks to arms or choosing a beneficial order
of these. In Fig. 8 the makespans of successive solutions of
showcase 1 and 2 are compared. It can be seen, that the
makespan of the more constrained problem is larger than
the unconstrained version.

D. Ease of use

To enable convenient usage of our system, we implemented
several features which add to the flexibility of the speech.
First, we enable to specify sets of homophones and syn-
onyms of words or phrases, e.g., then:[them], then:[and then,
afterwards, after that, and later]. The synonyms allow the
user to use richer vocabulary to express the same concept.
The homophones are used to correct errors of the voice
recognition software. Knowledge of the task and therefore
the words likely to be used is utilized when constructing the
sets of homophonous and synonymous words. Second, our
system is robust to filling words such that ”Pick a big bolt
from a big bolt storage and then place it here” leads to the
same interpretation as ”Just take that big bolt from hmm

the big bolt storage and afterwards place it directly here.”.
Third, common variations in the sentences stem from the
use of articles (a/the/one), which is recognized and handled
directly in the grammar6.

To evaluate the ease of use of our system, we conducted
a user-study on 2 novice users. We introduced them briefly
to our system. In particular, we provided them with list of
language constructs they can use. We explained to them that
their linguistic input has to be accompanied by a physi-
cal demonstration and that the location references should
roughly occur at the same time and in the same order as
the linguistic description. Finally, we showed three examples
of demonstrations with an increasing complexity. Users had
to then fulfill given tasks based on the instructional booklet
and were corrected on each mistake. It took approximately
15 minutes until both users were able to instruct the robot
for all showcases.

VII. CONCLUSION AND DISCUSSION

In this paper, we demonstrated and evaluated a system to pro-
gram robots using natural language and simultaneous demon-
strations. But instead of translating those inputs directly into
a definite robot plan, we compile a planning problem using
Ordered Visiting Constraints [5]. The definition of such an
OVC scheduling problem is particularly well suited for the
definition by linguistic input, because the formalism abstracts
away any robot dependency and thus reduces the complex-
ity in the necessary language constructs. Subsequently, the
solver is used to find an optimized schedule with regard to
the makespan by utilizing the robot’s resources.

There are several aspects, to further investigate in the
future. First, we would like to extend the amount of actions,
tasks and constraints which our system can handle. Some
visions are trajectory actions (e.g., gluing a line, welding
along an edge, etc.), spatial constraints (e.g. constrain all
objects on the left from here, etc.), correcting mistakes
(’sorry, don’t make the last glue point there, but here’) or
referencing to multiple former tasks (e.g., last 5 subtasks
have to be made within 20 seconds). Second, we would like
include hand and finger gestures to enrich the interaction.

6see our web page http://imitrob.ciirc.cvut.cz/
planning.html for the audio to sentence converter
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As a complementary method, we would like to explore the
possibilities to use RGB(D) sensors to track 6DOF pose of
the object and hand and avoid usage of the external HTC
Vive system. Finally, the optimality of the found solutions
and robot behavior are object of future studies.
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