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Imitrob: Imitation Learning Dataset for Training
and Evaluating 6D Object Pose Estimators

[Supplementary material]
Jiri Sedlar1,∗, Karla Stepanova1,∗, Radoslav Skoviera1, Jan K. Behrens1, Matus Tuna2, Gabriela Sejnova1,

Josef Sivic1, and Robert Babuska1,3

This supplementary material provides additional infor-
mation to paper Imitrob: Imitation Learning Dataset for
Training and Evaluating 6D Object Pose Estimators (DOI
10.1109/LRA.2023.3259735). Sec. A covers the setup details
and additional experimental results, Sec. B contains links to
the dataset documentation and supplementary code and de-
scribes the intended uses of the dataset, Sec. C provides details
on the dataset licensing and hosting, including the main-
tainance plan, and Sec. D contains a standardized datasheet
for the Imitrob dataset.

A. SETUP DETAILS AND ADDITIONAL EXPERIMENTAL
RESULTS

This section provides details about the Imitrob dataset ac-
qusition setup, evaluation metrics, segmentation methods, 6D
object pose estimator setup, and all experiments, including a
comparison with another object pose estimator and the impact
of the tracker position.

The sensor setup calibration is described in Sec. A.1 and
the method for calibration of the HTC Vive tracker to the tool
is explained in Sec. A.2. The evaluation metrics are defined
in detail in Sec. A.3 and the object segmentation methods
used for background augmentation are described in Sec. A.4.
The 6D object pose estimator DOPE [1] settings used for the
experiments are given in Sec. A.5.

The remaining sections contain detailed experimental results
and ablation studies. Sec. A.6 shows the impact of image
resolution and batch size on the accuracy of the 6D object pose
estimator, while Sec. A.7 compares the impact of different
object segmentation methods on the benefit of the back-
ground augmentation. Secs. A.8-A.13 contain complete results
of the experiments evaluating different data augmentation
methods, generalization across camera viewpoints, left/right
hand, demonstrators, robustness to clutter, and performance
on different tools and tasks, respectively. In Sec. A.14 we
compare the model-free estimator DOPE with a model-based
6D object pose estimator CosyPose [2] on the power drill tool
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Fig. 1. The experimental setup for collection of ImitrobTest and ImitrobTrain
datasets. The setup consists of two RGB-D cameras (front camera C1 and
right-hand side camera C2), two HTC Vive lighthouses, and an HTC Vive
tracker attached to the tool.

and in Sec. A.15 we evaluate the performance of the 6D
object pose estimator DOPE with respect to different HTC
Vive tracker positions.

A.1 Sensor setup calibration

To calibrate the HTC Vive coordinate frame Ohtc (in one
of the lighthouses marked as HTC Vive in Fig. 1) to the
chessboard coordinate frame Ow, spherical motion patterns
centered at different chessboard corners pw were recorded
using an HTC Vive tracker mounted on a pointed metal rod
(the rod is shown in Fig. 2a).

The sphere center points phtc (relative to Ohtc) were com-
puted using orthogonal distance regression. The distances of
all center points to the common plane found using RANSAC
were smaller than 1 mm, i.e. all points lie on the flat plane of
the chessboard pattern. The optimal Euclidean transformation
H from phtc to pw (i.e. transformation between Ohtc and Ow)
was found using the SVD algorithm [3]. The average deviation
(residual ravg) of the acquired center points from the regular
chessboard grid pattern (acquired from the cameras) was below
2 mm for all experiments. The deviation was calculated as

ravg =

N∑
i=1

∥∥Hpihtc − piw
∥∥
2
+

∥∥H−1piw − pihtc
∥∥
2

2N
, (1)



2

where N is the number of acquired center points and corre-
sponding points in coordinate frames Ohtc and Ow have the
same index.

The final accuracy of the ground truth poses is also de-
pendent on the ability of the HTC Vive to provide accurate
and stable poses of the tracker attached to a tool with respect
to Ohtc. The accuracy of HTC Vive in dynamic situations is
evaluated in detail in [4].

A.2 HTC Vive tracker to tool calibration

The method presented in this section allows finding a
description of the object surface with respect to an attached
motion tracker that provides reference 6D data. In this paper, it
is used to find the bounding boxes of the manipulated objects
relative to the tracker, which in turn are used to generate the
reference bounding boxes for the Imitrob dataset.

Note that the computed bounding boxes do not affect the
performance of 6D pose estimators because the training and
testing are executed using the same bounding box calibration.
The accuracy of the pose annotations is mainly determined
by the HTC Vive dynamic accuracy, which was evaluated in
[4]. Nonetheless, we look for bounding boxes that 1) contain
the object, 2) align with the tracker axis, and 3) are minimal
in size. In this way, the bounding boxes can be used to
create the segmentation masks provided with the dataset and
ensure consistent appearance in different experiments. The
tracker attachment was chosen to allow unobstructed handling
of the tool and good visibility of the tracker. If possible,
the tracker was aligned with the main tool axis. To find
the object dimensions relative to the tracker, we traced the
tool and tracker surfaces with a pointing device (pointed rod
with another HTC Vive tracker) while recording the positions
of both trackers (see Fig. 2a). Contour tracing for surface
reconstruction was described in [5]. We transform the N
recorded pointing tip points into the frame of the tool tracker to
obtain a set of measurements P = {pi ⊂ R3}. The existence
of a non-empty set P̂ ⊂ P of outliers makes filtering of the
measurements P necessary. Our filtering approach based on
measurement density is explained next. For a regular grid V
within the axis-aligned bounding box of the traced volume,
we calculate a measurement density di as the number of
measurements closer than a threshold δ at each grid vertex
vi ∈ V :

di =
∑
pi∈Γ

{
0 if ||pi − vi||2 > δ

1 if ||pi − vi||2 ≤ δ ,
(2)

where Γ is a subset of the set of measured points P . We
consider the voxel centered at grid vertex vi to be part of
the object surface if the density of measurements di at the
given grid cell is larger than a threshold ζ, i.e. di ≥ ζ. To
approximate Eq. (2) for the purpose of comparing it with
the threshold ζ, we use a k-d Tree to efficiently organize the
measurement points pi ∈ P and query it for the ζ +1 nearest
neighbors Pi for each grid vertex vi with a cut-off distance
of δ + ϵ. We evaluate Eq. (2) for Γ = Pi to decide if vi is
part of the object’s surface. In short, we decide for each grid
point whether it is part of the tool’s surface by evaluating how

(a) Tracing of a tool (b) Tool bounding box

Fig. 2. Calibration of the tool with respect to the tracking device. a) The tool
(roller) surface is traced with a pointing device. b) The collected data (here
6 364 surface trace points) is used to calculate a voxel grid for the tool (dark
gray) and the final bounding box (light gray).

many measurements are present in its vicinity. For efficiency,
we check only just enough nearest neighbors to decide if the
threshold was reached.

From this, we create a voxel grid with the dimensions of the
object, on which we calculate a minimal bounding box using
the trimesh library [6]. To find instead the smallest bounding
box that is aligned with the tracker’s z-axis (second bounding
box property), we rotate the occupied voxels in 0.1◦ steps
around the z-axis and record the volume of each axis-aligned
bounding box. The rotation with the smallest volume is then
used. In this work, we used δ = 0.01m and a resolution of 200
grid points per meter. Fig. 2b visualizes the resulting voxel grid
(dark gray) and the bounding box (light gray) for the roller.

A.3 Evaluation metrics

The 6D object pose can be defined by 3D coordinates of
the bounding box vertices p1, . . . ,p8 ∈ R3 or by a rigid
transformation [R|t] ∈ SE(3), consisting of a rotation matrix
R ∈ SO(3) and a translation vector t ∈ R3. To evaluate the
performance of a 6D object pose estimator on the ImitrobTest
dataset, we use the following three metrics.

a) ADD pass rate: The ADD [1] is defined as the av-
erage Euclidean distance between the corresponding predicted
(pi

pre) and reference (pi
ref ) vertices and centroid (p9 ∈ R3) of

the object 3D bounding box:

ADD =
1

9

9∑
i=1

||pi
pre − pi

ref ||2 . (3)

The ADD pass rate (ADDt) measures the percentage of
frames where the ADD value of the prediction (P ) is lower
than a selected threshold (t ∈ R):

ADDt =
|{P |ADD ≤ t}|

|{P}|
· 100% . (4)

A higher ADDt value for a given threshold t indicates a better
prediction accuracy of the object 3D bounding box. In our
experiments, we report ADD pass rate values for thresholds
t = 2 cm (ADD2), 5 cm (ADD5) and 10 cm (ADD10). By
definition, ADD2 ≤ ADD5 ≤ ADD10.

For comparison of models trained with (ADDaug
t ) and

without (ADDnoaug
t ) augmentation, we use the ratio of their

respective ADD pass rates:

ADDratio
t =

ADDaug
t

ADDnoaug
t

. (5)
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A higher ADDratio
t value indicates a bigger benefit of the

augmentation.
b) Rotation error: The rotation error measures the angle

between the predicted (Rpre) and reference (Rref ) rotation
matrices:

Erot = arccos

(
trace(Rpre

−1Rref)− 1

2

)
. (6)

A lower Erot value corresponds to a better estimate of the
object orientation.

c) Translation error: The translation error measures the
Euclidean distance between the predicted (tpre) and reference
(tref ) translation vectors:

Etra = ||tpre − tref ||2 . (7)

A lower Etra value indicates a better localization of the object
in space.

A.4 Object segmentation methods for background augmenta-
tion

In order to augment the image background, we need to
segment the shape of the object. Because we work with
hand-held tools that are heavily occluded by the hand, we
segment both the tool and the hand. We leverage the green
background in the ImitrobTrain dataset to segment the image
by thresholding. To remove the rest of the arm, we crop the
segmentation mask by the convex hull of the tool 3D bounding
box vertices projected into the 2D image. The result is a binary
mask of the tool and hand (MaskThresholding, see Fig. 3b).
We enhance the segmentation by F , B, Alpha Matting [7],
which estimates also the foreground opacity and color along
the boundaries. The output is an RGBA image with opaque
foreground, transparent background, and smooth boundaries
between them (MaskFBA, see Fig. 3c).

A.5 Object pose estimator DOPE settings

We estimate the 6D object pose by the DOPE method [1]
in each frame and concatenate the frame predictions into a
complete trajectory. Since we focus our evaluation on pose
estimation in separate images, we do not post-process the
individual frame predictions with any temporal or dynamic
model. Our implementation of the DOPE method was based
on the referenced PyTorch implementation by [1]. We trained
our models on Nvidia 1080Ti and Nvidia V100 GPUs using
the ADAM optimizer [8], learning rate 0.0001, and batch size
16. To be able to train with this batch size, we downsized
the input image dimensions by half to 424×240 pixels, which
decreased the training time without a negative impact on the
accuracy (see Sec. A.6 for the corresponding ablation study).
The ground truth belief maps we used for the DOPE training
contain a 2D Gaussian with 2-pixel standard deviation and 2-
pixel radius at the bounding box vertices and centroid. In all
experiments, we train on subsets of the ImitrobTrain dataset
and test on subsets of the ImitrobTest dataset.

Fig. 3. Segmentation of a frame from the ImitrobTrain dataset. a) Original
image (NoAug) and segmentation of the tool and hand by b) MaskThresholding
and c) MaskFBA (see Sec. A.4).

TABLE I
IMPACT OF INPUT IMAGE RESOLUTION AND BATCH SIZE ON DOPE 6D
OBJECT POSE ACCURACY (SEE SEC. A.6). ADD PASS RATES ACHIEVED

BY TRAINING WITH THE ORIGINAL RESOLUTION (848×480 PIXELS) AND
BATCH SIZE 8 AND WITH THE IMAGES DOWNSIZED BY A FACTOR OF TWO

(424×240 PIXELS) AND BATCH SIZE 16.

ADDt 848×480 pixels 424×240 pixels
threshold t 2 cm 5 cm 10 cm 2 cm 5 cm 10 cm

glue gun 7.4 49.8 75.6 9.9 57.8 79.8
grout float 12.5 75.6 93.0 9.7 73.9 97.7

roller 4.5 40.3 67.4 4.3 48.6 84.9
average 8.1 55.2 78.7 8.0 60.1 87.5

TABLE II
IMPACT OF OBJECT SEGMENTATION METHODS (SEE SEC. A.7). ADD PASS

RATES ACHIEVED BY MODELS TRAINED USING DIFFERENT OBJECT
SEGMENTATION METHODS (SEE SEC. A.4) FOR DATA AUGMENTATION.

ADDt MaskThresholding MaskFBA
threshold t 2 cm 5 cm 10 cm 2 cm 5 cm 10 cm

glue gun 9.4 57.4 78.4 10.7 60.2 80.6
grout float 10.7 77.8 97.1 10.5 73.0 97.3

roller 4.3 41.2 81.3 4.3 50.5 86.3
average 8.1 58.8 85.6 8.5 61.2 88.1

A.6 Impact of image resolution and batch size

We explore the impact of downsizing the input images and
increasing the batch size on the quality of the 6D object pose
estimation by DOPE. Table I presents a comparison of ADD
pass rates for the original (848×480 pixels, batch size 8) and
downsized (424×240 pixels, batch size 16) frames. While
the similarity in performance for the 2 cm threshold could
be attributed to a trade-off between the larger batch size and
loss of detail, the increased batch size clearly improved the
accuracy for the 5 cm and 10 cm thresholds. Therefore, we
use the 424×240 pixel resolution and batch size 16 for all
other experiments.

A.7 Comparison of object segmentation methods

Table II compares the ADD pass rates for the Mask-
Thresholding and MaskFBA object segmentation methods (see
Sec. A.4). Because MaskFBA outperforms MaskThresholding
on average for all three thresholds, we use MaskFBA for object
segmentation in all other experiments.

A.8 Benefits of data augmentation

Table III shows 2 cm, 5 cm, and 10 cm ADD pass rates for
the DOPE estimator using different background augmentation
methods from Sec. IV-B in the main paper. For all three
thresholds, the best average ADD pass rates were achieved by
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TABLE III
COMPARISON OF DATA AUGMENTATION METHODS (SEE SEC. A.8). ADD PASS RATES ACHIEVED BY MODELS TRAINED WITH DIFFERENT DATA

AUGMENTATION METHODS (SEE SEC. V IN THE MAIN PAPER).

ADDt NoAug BgNoise BgRandom BgAlternate BgBlend
threshold t 2 cm 5 cm 10 cm 2 cm 5 cm 10 cm 2 cm 5 cm 10 cm 2 cm 5 cm 10 cm 2 cm 5 cm 10 cm

glue gun 1.1 17.0 36.3 1.1 18.9 41.7 6.7 36.5 53.4 5.6 45.4 72.2 9.9 57.8 79.8
grout float 5.3 45.4 80.3 3.3 43.6 86.1 7.7 60.4 84.2 9.6 71.8 95.8 9.7 73.9 97.7

roller 3.4 25.3 56.6 3.8 26.3 52.9 2.9 39.8 85.5 6.3 52.2 85.6 4.3 48.6 84.9
average 3.3 29.2 57.8 2.7 29.6 60.2 5.8 45.6 74.4 7.2 56.5 84.5 8.0 60.1 87.5

TABLE IV
GENERALIZATION ACROSS CAMERA VIEWPOINTS (SEE SEC. A.9). COMPARISON OF ADD PASS RATES FOR COMBINATIONS OF CAMERA VIEWPOINTS
(FRONT CAMERA C1 AND RIGHT-HAND SIDE CAMERA C2) BETWEEN TRAINING AND TESTING. “SAME” REFERS TO TRAINING AND TESTING ON THE

SAME CAMERA, “OTHER” TO TRAINING ON ONE CAMERA AND TESTING ON THE OTHER, AND “BOTH” TO TRAINING ON BOTH CAMERAS. THE LAST ROW
SHOWS THE AVERAGE VALUES FOR MODELS TRAINED WITHOUT DATA AUGMENTATION (NoAug).

ADDt Training Test C1 Test C2
threshold t camera 2 cm 5 cm 10 cm 2 cm 5 cm 10 cm

glue gun
Same 8.7 61.6 84.6 5.8 53.3 82.6
Other 0.0 0.2 1.8 0.1 2.2 12.0
Both 13.7 63.6 83.4 6.3 50.6 75.0

grout float
Same 2.4 50.7 90.1 6.7 66.0 96.2
Other 0.0 0.0 0.1 0.0 1.2 21.5
Both 13.2 78.1 97.8 6.7 77.3 97.3

roller
Same 5.9 56.7 80.9 0.4 37.2 89.0
Other 0.0 0.1 1.2 0.0 0.0 0.0
Both 8.2 66.3 85.8 0.0 19.1 72.8

average
Same 5.7 56.3 85.2 4.3 52.2 89.3
Other 0.0 0.1 1.0 0.0 1.1 11.2
Both 11.7 69.3 89.0 4.4 49.0 81.7

NoAug
Same 1.7 28.7 66.0 3.2 41.8 74.3
Other 0.0 0.0 0.6 0.0 0.8 8.0
Both 3.0 23.5 54.3 3.5 34.8 61.1

TABLE V
GENERALIZATION ACROSS LEFT AND RIGHT HAND (SEE SEC. A.10). COMPARISON OF ADD PASS RATES FOR COMBINATIONS OF HOLDING THE TOOL IN
THE LEFT (LH) OR RIGHT (RH) HAND BETWEEN TRAINING AND TESTING. “SAME” REFERS TO TRAINING AND TESTING ON THE SAME HAND, “OTHER”

TO TRAINING ON ONE HAND AND TESTING ON THE OTHER, AND “BOTH” TO TRAINING ON BOTH LEFT AND RIGHT HAND. THE LAST ROW SHOWS THE
AVERAGE VALUES FOR MODELS TRAINED WITHOUT DATA AUGMENTATION (NoAug).

ADDt Training Test LH Test RH
threshold t hand 2 cm 5 cm 10 cm 2 cm 5 cm 10 cm

glue gun
Same 5.6 60.9 77.6 1.8 25.6 56.9
Other 0.7 8.6 25.0 1.1 22.8 54.8
Both 8.3 60.8 87.0 8.2 51.4 74.9

grout float
Same 3.2 60.7 95.3 3.4 57.1 93.7
Other 1.2 31.1 74.5 2.3 53.4 81.2
Both 7.9 70.8 97.8 11.0 83.8 98.3

roller
Same 5.9 49.9 83.0 1.6 37.9 73.4
Other 0.8 23.3 45.1 0.3 4.9 22.7
Both 9.4 49.9 89.3 4.9 35.7 75.4

average
Same 4.9 57.2 85.3 2.3 40.2 74.6
Other 0.9 21.0 48.2 1.2 27.0 52.9
Both 8.5 60.5 91.4 8.0 57.0 82.8

NoAug
Same 1.9 29.4 57.1 1.5 22.5 51.9
Other 0.9 13.7 35.0 0.8 18.4 47.6
Both 4.0 31.3 58.4 2.0 25.6 52.6

TABLE VI
GENERALIZATION ACROSS DEMONSTRATORS (SEE SEC. A.11). COMPARISON OF ADD PASS RATES FOR VARIOUS COMBINATIONS OF THE FOUR

DEMONSTRATORS (S1-S4) BETWEEN TRAINING AND TESTING. “ALLTOALL” REFERS TO TRAINING ONE MODEL FOR ALL SUBJECTS, “THREETODIFF”
TO TRAINING ON THREE SUBJECTS AND TESTING ON THE REMAINING ONE, AND “ONETOSAME” TO TRAINING AND TESTING ON THE SAME SUBJECT.

THE ADD PASS RATES ARE AVERAGED ACROSS ALL TEST SUBJECTS (I.E. S1-S4). THE LAST ROW SHOWS THE AVERAGE FOR MODELS TRAINED
WITHOUT DATA AUGMENTATION (NoAug).

ADDt AllToAll ThreeToDiff OneToSame
threshold t 2 cm 5 cm 10 cm 2 cm 5 cm 10 cm 2 cm 5 cm 10 cm

glue gun 10.1 57.2 80.1 6.2 52.6 78.2 3.4 32.8 69.4
grout float 9.5 77.2 97.5 6.0 64.1 95.3 1.8 38.8 81.6

roller 3.9 41.8 78.1 4.5 39.1 77.3 0.7 21.8 53.8
average 7.9 58.8 85.2 5.6 52.0 83.6 2.0 31.1 68.3
NoAug 3.1 28.9 57.7 1.9 22.3 52.3 1.2 18.7 51.6
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the BgBlend augmentation. ADDratio
2 = 2.4, ADDratio

5 = 2.1,
and ADDratio

10 = 1.5 values for BgBlend indicate a big
improvement in accuracy with respect to training without
augmentation (NoAug).

A.9 Generalization across camera viewpoints

Table IV shows the 2 cm, 5 cm, and 10 cm ADD pass rates
for various combinations of the camera viewpoints between
training and testing (see Sec. V in the main paper for a detailed
description of the scenarios).

A.10 Generalization across left/right hand

Table V shows the 2 cm, 5 cm, and 10 cm ADD pass rates for
various combinations of the left/right hand between training
and testing (see Sec. V in the main paper for a detailed
description of the scenarios).

A.11 Generalization across demonstrators

Table VI shows the 2 cm, 5 cm, and 10 cm ADD pass
rates for various combinations of the demonstrators between
training and testing (see Sec. V in the main paper for a detailed
description of the scenarios).

A.12 Robustness to clutter

Table VII shows the 2 cm, 5 cm, and 10 cm ADD pass
rates for the 6D object pose estimator DOPE for the pres-
ence/absence of clutter in the test environment (see Sec. V in
the main paper for a detailed description of the scenarios).

A.13 Performance on different tools and tasks

Table VIII shows the 2 cm, 5 cm, and 10 cm ADD pass rates
as well as the rotation and translation errors (see Sec. A.3) for
all tools and tasks in the ImitrobTest dataset.

A.14 Comparison of DOPE and CosyPose results

The power drill has a 3D model available in the YCB
Object dataset [9], which enables comparison of model-free
and model-based object pose estimation methods on this tool.
Here we compare the performance of model-free estimator
DOPE [1] and model-based estimator CosyPose [2]. While
CosyPose had been trained extensively on rendered images
of 3D models of the objects from the YCB Object dataset,
DOPE was trained on short video sequences of the hand-held
power drill from the ImitrobTrain dataset (see Fig. 4a). Below
we compare the detection rates and the rotation and translation
errors of DOPE and CosyPose on power drill in the ImitrobTest
dataset.

Using 80% confidence threshold, CosyPose detected the
power drill in 34% of the test frames. Additional wrong objects
were detected in less than 1% of the frames, but the wrong
detections had significantly lower confidence than the correct
ones and there were no cases where only wrong objects were
detected. No object was detected in the remaining 66% of the
frames.

TABLE VII
ROBUSTNESS TO CLUTTER (SEE SEC. A.12). COMPARISON OF ADD PASS
RATES FOR GLUE GUN TASK FRAME TESTED ON A TABLE WITH ONLY THE

GLUING FRAME (NoClutter) AND WITH A CLUTTER OF OTHER OBJECTS
AROUND THE FRAME (Clutter). THE BOTTOM ROW SHOWS RESULTS FOR A

MODEL TRAINED WITHOUT DATA AUGMENTATION (NoAug).

ADDt NoClutter Clutter
threshold t 2 cm 5 cm 10 cm 2 cm 5 cm 10 cm

glue gun (frame) 8.6 61.8 90.1 11.0 61.5 83.7
NoAug 1.7 22.8 47.7 0.3 4.9 19.8

TABLE VIII
PERFORMANCE OF THE 6D OBJECT POSE ESTIMATOR DOPE ON

DIFFERENT TOOLS AND MANIPULATION TASKS (SEE SEC. A.13). 2 CM,
5 CM, AND 10 CM ADD PASS RATE ACCURACY (ADDt) AND AVERAGE
ROTATION (Erot) AND TRANSLATION (Etra) ERRORS FOR DIFFERENT

TOOLS AND TASKS. INVALID DETECTIONS WERE EXCLUDED FROM THE
COMPUTATION OF AVERAGE Erot AND Etra .

Tool Task ADDt (%) Erot Etra

2 cm 5 cm 10 cm (deg) (cm)

glue gun

frame 8.0 53.3 77.1 11.8 5.0
densewave 10.6 61.9 88.6 5.0 3.6
sparsewave 8.3 66.0 91.0 5.0 3.4

average 9.0 60.4 85.6 7.3 4.0

grout float
round 9.2 74.4 98.7 3.9 2.7
sweep 9.3 82.7 98.1 4.3 2.2

average 9.3 78.6 98.4 4.1 2.5
roller press 4.3 50.5 86.3 8.7 3.7

glue gun 2 lshape 0.0 9.0 41.9 38.5 9.9
glue gun 3 lshape 0.1 4.7 30.0 40.3 10.2
glue gun 4 lshape 1.2 23.4 52.6 20.9 8.4
heat gun heating 0.0 13.2 56.3 14.3 7.0

power drill down 5.6 59.8 87.0 8.0 3.8
soldering iron soldering 0.5 12.8 41.4 35.6 9.0

average - 3.3 34.7 64.4 19.8 6.5

To estimate the rotation and translation errors, we needed
to convert our ground truth annotations to have the same
reference coordinate system as the 3D model. Therefore, we
aligned the 3D model mesh from the YCB Object dataset
with our tracing mesh using ICP in MeshLab (see Fig. 4b).
The average rotation and translation errors of CosyPose were
Erot = 43.6◦ and Etra = 4.9 cm, respectively.

However, the comparison with the DOPE results (see Ta-
ble IX) is not straightforward. Most importantly, the perfor-
mace of CosyPose may be affected by the presence of the
HTC Vive tracker in the ImitrobTest dataset. In the case of
DOPE, the tracker was present both in training and testing,
whereas CosyPose was trained using a 3D model of the tool
without the tracker. In addition, while DOPE was trained on
a single object (power drill), CosyPose was trained on a set
of multiple objects (YCB Object dataset), leading to possible
false positives. Also, the DOPE results were filtered to exclude
detections farther than one meter from the reference pose, but
this affected less than one percent of frames.

A.15 Robustness to tracker position

To evaluate the impact of the HTC Vive tracker position
on the tool on the accuracy of the 6D object pose estimator,
we have recorded the same object with two different tracker
positions: glue gun 3 has the tracker mounted on the top, while
glue gun 4 has the tracker mounted on its left side (see Fig. 5).
We have trained and evaluated the 6D object pose estimator
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(a) power drill (b) 3D model + aligned meshes

Fig. 4. Alignment of the power drill tool meshes. a) The power drill in the
ImitrobTrain dataset. b) The mesh of the 3D model from the YCB Object
dataset [9] aligned to the tool tracing mesh using ICP in MeshLab. The
geometric transformation describes the difference between the 3D model mesh
origin and the HTC Vive tracker origin.

TABLE IX
COMPARISON OF MODEL-FREE ESTIMATOR DOPE [1] AND MODEL-BASED

ESTIMATOR COSYPOSE [2] ON THE POWER DRILL TOOL. THE
PERCENTAGE OF FRAMES WHERE THE TOOL WAS DETECTED

(DETECTIONS) AND AVERAGE ROTATION (Erot) AND TRANSLATION
(Etra) ERRORS.

6D object pose Detections Erot Etra

estimation method (% frames) (deg) (cm)
DOPE 99.3% 8.0 3.8

CosyPose 34.0% 43.6 4.9

DOPE using four different configurations: a) training and
testing on glue gun 3, b) training and testing on glue gun 4
(these two configurations are reported also in the main paper),
c) training on glue gun 3 and testing on glue gun 4, and d)
training on glue gun 4 and testing on glue gun 3. Table X shows
the resulting ADD5 accuracy and average translation and
rotation errors.

In the glue gun 3 to glue gun 3 and glue gun 4 to glue gun 4
configurations, the pose estimator performed better on
glue gun 4 than on glue gun 3. This may be related to smaller
occlusions of the tool when the tracker is mounted on its
left side rather than on the top, considering that the side
camera (C2) is on the right-hand side in out setup. However,
in the glue gun 3 to glue gun 4 and glue gun 4 to glue gun 3
configurations, where the position of the tracker changed
between training and testing, the estimator was not able to
correctly predict the pose of the tool.

These experiments indicate that the selected tracker position
can affect the 6D object pose estimator performance and that
a transfer between different tracker positions is a challenging
problem. For a real application, the HTC Vive tracker could be
replaced by a smaller or concealed tracking device, e.g. based
on an inertial measuring unit. However, this engineering task is
beyond the scope of this paper, as the main goal of the Imitrob
dataset is benchmarking 6D object pose estimation methods on
hand-held tool manipulation tasks rather than deployment to
the end-user.

(a) glue gun 3 (b) glue gun 4

Fig. 5. The same object with different HTC Vive tracker positions: a)
glue gun 3 has the tracker mounted on the top; b) glue gun 4 has the tracker
mounted on the left side.

TABLE X
ROBUSTNESS TO TRACKER POSITION (SEE SEC. A.15). 5 CM ADD PASS

RATE ACCURACY (ADD5) AND AVERAGE ROTATION (Erot) AND
TRANSLATION (Etra) ERRORS FOR DIFFERENT COMBINATIONS OF

TRAINING AND TESTING ON GLUE GUN 3 (TRACKER MOUNTED ON THE
TOP) AND GLUE GUN 4 (TRACKER MOUNTED ON THE LEFT).

Training Testing ADD5 Erot Etra

tool tool (%) (deg) (cm)
glue gun 3 glue gun 3 4.7 40.3 10.2
glue gun 4 glue gun 4 23.4 20.9 8.4
glue gun 3 glue gun 4 0.0 148.6 18.3
glue gun 4 glue gun 3 0.0 148.1 19.8

B. DATASET DOCUMENTATION AND INTENDED USES

Dataset documentation: The Imitrob dataset documen-
tation, metadata and download instructions are available at:
http://imitrob.ciirc.cvut.cz/imitrobdataset.php

Supplementary code: The GitHub repository for the sup-
plementary code (including example usage of the DOPE [1]
method) is at: https://github.com/imitrob/imitrob_dataset_code

Intended uses: The dataset is primarily intended for
benchmarking 6D pose estimation methods in manipulation
tasks with hand-held objects and evaluating their ability to
generalize with respect to various conditions. It can be also
used to evaluate the effect of different data augmentation
methods. Another usage is the methodology for data acqui-
sition and 6D pose estimator training for new tools and tasks
and a guideline for collecting more extensive datasets and
benchmarking 6D object pose estimators on various tasks with
hand-held tools, e.g. in imitation learning, grasping, virtual or
augmented reality, etc. In general, we hope that the presented
dataset will trigger further development of 6D object pose
estimation methods and their usage in various industrial tasks
based on the required accuracy.

Author statement: We bear all responsibility in case of
violation of right in using our dataset or code. We confirm that
we used all the existing assets in accordance to their license.

C. HOSTING, LICENSING, AND MAINTAINANCE PLAN

Hosting: The Imitrob dataset is hosted on our in-house
servers, which are managed by our dedicated IT department.
The dataset and source code are publicly available. The
dataset website (http://imitrob.ciirc.cvut.cz/imitrobdataset.php)
describes the dataset and provides download links. The source
code is hosted on https://github.com/imitrob/imitrob_dataset_
code.

http://imitrob.ciirc.cvut.cz/imitrobdataset.php
https://github.com/imitrob/imitrob_dataset_code
http://imitrob.ciirc.cvut.cz/imitrobdataset.php
https://github.com/imitrob/imitrob_dataset_code
https://github.com/imitrob/imitrob_dataset_code
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Maintainance: The authors will provide important bug
fixes to the community as commits to the GitHub repository.
The dataset webpage will summarize changes to the code and
the dataset. In the unlikely case that our in-house data center
stops operating, we will migrate the dataset to another hosting
and announce the new links in the GitHub repository.

Licensing: The provided dataset and supplementary code
are copyrighted by us and published under the CC BY-NC-SA
4.0 license1. To use the code or the dataset, the original work
has to be attributed, as specified by the authors on the dataset
or code repository websites.

Contributions: Contributions to the dataset and supple-
mentary code are welcome and contributors should contact the
authors.

Contact: The contact e-mail address of the manager of
the dataset: karla.stepanova@cvut.cz.

D. DATASHEET FOR DATASET IMITROB

Questions from the Datasheets for Datasets (https://arxiv.
org/abs/1803.09010) paper, v7.

D.1 Motivation

For what purpose was the dataset created?
The Imitrob dataset was created with the aim to enable
imitation learning of manipulation tasks purely from visual
observations. This includes the ability to recognize 6D pose
of the hand-held objects. Current methods are typically trained
and tested in different conditions than this kind of tasks,
so it is very difficult to estimate how they will perform
in manipulation tasks with hand-held tools. As expected,
the tested methods showed quite low accuracy in the case
of the mainipulation with hand-held tools, especially when
generalization to new users, camera viewpoints, or tasks was
needed. This motivated the creation of a new dataset, which
would enable benchmarking of these methods.

Who created the dataset (e.g., which team, research group)
and on behalf of which entity (e.g., company, institution,
organization)?
The dataset was created by Jiri Sedlar, Karla Stepanova,
Radoslav Skoviera, Gabriela Sejnova, Jan K. Behrens, and
Josef Sivic within CIIRC CTU in Prague (Imitation learning
centre http://imitrob.ciirc.cvut.cz) in collaboration with Matus
Tuna from Comenius University in Bratislava and Robert
Babuska from TU Delft.

Who funded the creation of the dataset?
Jiri Sedlar and Josef Sivic were supported by the Euro-
pean Regional Development Fund under the project IM-
PACT (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000468) and the
EU Horizon Europe Programme under the project AGIMUS
(reg. no. 101070165). Matus Tuna was supported by project
VEGA 1/0796/18. Karla Stepanova, Radoslav Skoviera, and
Gabriela Sejnova were supported by the Technological Agency
of CR under the grant Collaborative workspace of the future

1https://creativecommons.org/licenses/by-nc-sa/4.0/

(reg. no. FV40319). Gabriela Sejnova was supported by CTU
Student Grant Agency (reg. no. SGS21/184/OHK3/3T/37).
Radoslav Skoviera, Jan Kristof Behrens, and Robert
Babuska were supported by the European Regional Devel-
opment Fund under the project Robotics for Industry 4.0
(reg. no. CZ.02.1.01/0.0/0.0/15_003/0000470).

D.2 Composition

What do the instances that comprise the dataset represent
(e.g., documents, photos, people, countries)?

The dataset consists of RGB-D images extracted from 352
video sequences, accompanied by 6D annotation. The videos
capture simple manipulation tasks with 9 hand-held tools
(glue gun, grout float, roller, glue gun 2, glue gun 3, glue gun 4,
heat gun, power drill, and soldering iron) such as applying glue
along a given trajectory, polishing a surface, or flattening a
cloth.

How many instances are there in total (of each type, if
appropriate)?

The Imitrob dataset contains images extracted from 352 video
sequences (208 in the ImitrobTest dataset and 144 in the
ImitrobTrain dataset) of hand-held tool manipulations. The
ImitrobTest component of the dataset contains 100 332 images
and the ImitrobTrain component contains 83 778 images.

Does the dataset contain all possible instances or is it a
sample (not necessarily random) of instances from a larger
set?

The dataset contains all the possible instances.

What data does each instance consist of?

Each video frame contains the following data:

• 6D pose of the recorded tool (6DOF/*.json)
• 2D image coordinates of the tool 3D bounding box

vertices and centroid (BBox/*.json)
• depth image (Depth/*.png)
• RGB image (Image/*.png)

In addition, each frame of the ImitrobTrain dataset also
contains:

• binary mask of the segmented tool and hand
(Mask_thresholding/*.png)

• RGB image with the segmented tool and hand opaque
and the background transparent (Mask/*.png)

Each video sequence in the Imitrob dataset contains:

• 3D coordinates of the tool bounding box vertices
and centroid with respect to the HTC Vive Tracker
(BB_in_tracker) and intrinsic camera matrices for cam-
eras C1 (K_C1) and C2 (K_C2) (parameters.json)

The training/test component, tool, task, subject, camera,
left/right hand or presence/absence of clutter are identified in
the name of the video sequence folder.

https://arxiv.org/abs/1803.09010
https://arxiv.org/abs/1803.09010
http://imitrob.ciirc.cvut.cz
https://creativecommons.org/licenses/by-nc-sa/4.0/
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Is there a label or target associated with each instance?
Yes, each image is annotated with the 6D pose of the tool
as well as the video sequence labels, including the identifier
of the training/test component, tool, task, subject, camera
viewpoint, left/right hand, or presence/absence of clutter.

Is any information missing from individual instances?
The 6D pose for individual data frames was interpolated.
When the time difference between consecutive HTC Vive
frames was longer than 100 ms, the corresponding camera
images were discarded to ensure sufficient accuracy of the
ground truth data. Otherwise no information is missing and
the data is complete.

Are relationships between individual instances made explicit
(e.g., users’ movie ratings, social network links)?
Yes, the relationships are fully identified by the video sequence
labels (see above) and the position of the frame in the
sequence.

Are there recommended data splits (e.g., training, develop-
ment/validation, testing)?
We explicitly state the data splits used for training and testing
of the 6D pose estimator. The training set is an (augmented)
subset of the ImitrobTrain dataset, and the test set is a subset
of the ImitrobTest dataset.

Are there any errors, sources of noise, or redundancies in
the dataset?
Sources of noise include the calibration of the cameras and
the HTC Vive controllers and the synchronization between
the HTC Vive and the cameras (the HTC Vive data were
interpolated to the closest camera frame and if the distance
between two consecutive frames was longer than 100 ms,
the corresponding camera images were discarded to ensure
sufficiently accurate ground truth data).

Is the dataset self-contained, or does it link to or other-
wise rely on external resources (e.g., websites, tweets, other
datasets)?
Both the dataset and the supplementary code are self-
contained.

Does the dataset contain data that might be considered
confidential (e.g., data that is protected by legal privilege or
by doctor-patient confidentiality, data that includes the content
of individuals’ non-public communications)?
N/A.

Does the dataset contain data that, if viewed directly, might
be offensive, insulting, threatening, or might otherwise cause
anxiety?
N/A.

Does the dataset relate to people?
N/A.

Does the dataset identify any subpopulations (e.g., by age,
gender)?

N/A.

Is it possible to identify individuals (i.e., one or more natural
persons), either directly or indirectly (i.e., in combination with
other data) from the dataset?

N/A.

Does the dataset contain data that might be considered
sensitive in any way (e.g., data that reveals racial or ethnic ori-
gins, sexual orientations, religious beliefs, political opinions
or union memberships, or locations; financial or health data;
biometric or genetic data; forms of government identification,
such as social security numbers; criminal history)?

N/A.

Any other comments?

N/A.

D.3 Collection process

How was the data associated with each instance acquired?

The directly observable data (RGB-D images) were synchro-
nized with observable HTC Vive data. The parameters of each
video sequence setup (such as the tool, task, subject, camera
viewpoint, left/right hand, or presence/absence of clutter) were
manually annotated and associated with the corresponding
data.

What mechanisms or procedures were used to collect the
data (e.g., hardware apparatus or sensor, manual human
curation, software program, software API)?

The visual part of the dataset was collected by two RGB-D
cameras, specifically Intel RealSense D-435. The resolution of
both RGB and depth images was set to 848x480 and they were
recorded at 60 FPS. The 6D pose information was recorded
using HTC Vive VR system in standard configuration. An
HTC Vive tracker was mounted to the tools to acquire their
pose. The cameras and HTC Vive system were calibrated
towards a common coordinate system. The calibration of the
camera and HTC Vive was validated by the average distances
of associated points using a checkerboard pattern. The whole
acquisition system was implemented via the Robot Operating
System, using Python as the main programming language.

If the dataset is a sample from a larger set, what was
the sampling strategy (e.g., deterministic, probabilistic with
specific sampling probabilities)?

N/A.

Who was involved in the data collection process (e.g.,
students, crowdworkers, contractors) and how were they com-
pensated (e.g., how much were crowdworkers paid)?

Only the authors were involved in the collection process.
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Over what timeframe was the data collected?
The data was collected in January and February 2021
(glue gun, grout float, and roller) and in March 2023
(glue gun 2, glue gun 3, glue gun 4, heat gun, power drill, sol-
dering iron).

Were any ethical review processes conducted (e.g., by an
institutional review board)?
N/A.

Does the dataset relate to people?
N/A.

D.4 Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data done
(e.g., discretization or bucketing, tokenization, part-of-speech
tagging, SIFT feature extraction, removal of instances, pro-
cessing of missing values)?
The data were originally recorded as ROS bag files, from
which the individual data instances were extracted, synchro-
nized, interpolated, and saved to separate folders. For the
ImitrobTrain dataset, the masks were created by automatic
segmentation of the RGB images.

Was the “raw” data saved in addition to the prepro-
cessed/cleaned/labeled data (e.g., to support unanticipated
future uses)?
The original bag files are saved on our internal data storage,
but are too big to be easily shareable.

Is the software used to preprocess/clean/label the instances
available?
No, we don’t provide the raw data and thus neither the
code to process it. Dataset manipulation tools (for the al-
ready preprocessed and labeled data) are available on the
supplementary code GitHub page: https://github.com/imitrob/
imitrob_dataset_code.

D.5 Uses

Has the dataset been used for any tasks already?
This is the first use of the dataset.

Is there a repository that links to any or all papers or
systems that use the dataset?
There are no papers that use our dataset, yet. Future uses will
be added to the dataset/code website.

What (other) tasks could the dataset be used for?
The dataset is primarily intended for benchmarking 6D pose
estimation methods in manipulation tasks with hand-held
objects and evaluating their ability to generalize with respect
to various conditions. It can be also used to evaluate the
effect of different data augmentation methods. Another usage
is the methodology for data acquisition and 6D pose estimator
training for new tools and tasks and a guideline for collecting

more extensive datasets and benchmarking 6D object pose
estimators on various tasks with hand-held tools, e.g. in
imitation learning, grasping, virtual or augmented reality, etc.
In general, we hope that the presented dataset will trigger
further development of 6D object pose estimation methods and
their usage in various industrial tasks based on the required
accuracy.

Is there anything about the composition of the dataset or
the way it was collected and preprocessed/cleaned/labeled that
might impact future uses?

N/A.

Are there tasks for which the dataset should not be used?

N/A.

D.6 Distribution

Will the dataset be distributed to third parties outside of
the entity (e.g., company, institution, organization) on behalf
of which the dataset was created?

N/A.

How will the dataset will be distributed (e.g., tarball on
website, API, GitHub)?

The dataset is available on the dataset website: http://imitrob.
ciirc.cvut.cz/imitrobdataset.php

When will the dataset be distributed?

In 2023.

Will the dataset be distributed under a copyright or other
intellectual property (IP) license, and/or under applicable
terms of use (ToU)?

The newly provided datasets and benchmarks are copyrighted
by us and published under the CC BY-NC-SA 4.0 license2.

Have any third parties imposed IP-based or other restric-
tions on the data associated with the instances?

N/A.

Do any export controls or other regulatory restrictions apply
to the dataset or to individual instances?

N/A.

D.7 Maintenance

Who is supporting/hosting/maintaining the dataset?

Karla Stepanova at CIIRC CTU in Prague.

How can the owner/curator/manager of the dataset be
contacted (e.g., email address)?

Contact e-mail address: karla.stepanova@cvut.cz

2https://creativecommons.org/licenses/by-nc-sa/4.0/

https://github.com/imitrob/imitrob_dataset_code
https://github.com/imitrob/imitrob_dataset_code
http://imitrob.ciirc.cvut.cz/imitrobdataset.php
http://imitrob.ciirc.cvut.cz/imitrobdataset.php
https://creativecommons.org/licenses/by-nc-sa/4.0/
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Is there an erratum?

Any updates to the code will be visible as commits in the
GitHub repository. The dataset website will summarize all
changes to the code and the dataset.

Will the dataset be updated (e.g., to correct labeling errors,
add new instances, delete instances)?

Any updates to the code will be visible as commits in the
GitHub repository. The dataset website will summarize all
changes to the code and the dataset.

If the dataset relates to people, are there applicable limits
on the retention of the data associated with the instances (e.g.,
were individuals in question told that their data would be
retained for a fixed period of time and then deleted)?

N/A

Will older dataset versions continue to be
supported/hosted/maintained?

N/A.

If others want to extend/augment/build on/contribute to the
dataset, is there a mechanism for them to do so?

Yes, contributions to the dataset are welcome. Please get in
touch with the maintainer of the dataset via e-mail (see above).
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