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Abstract— In this paper, we present an integrated system that
includes reasoning from visual and natural language inputs,
action and motion planning, executing tasks by a robotic
arm, manipulating objects, and discovering their properties. A
vision to action module recognises the scene with objects and
their attributes and analyses enquiries formulated in natural
language. It performs multi-modal reasoning and generates a
sequence of simple actions that can be executed by a robot. The
scene model and action sequence are sent to a planning and
execution module that generates a motion plan with collision
avoidance, simulates the actions, and executes them. We use
synthetic data to train various components of the system and
test on a real robot to show the generalization capabilities. We
focus on a tabletop scenario with objects that can be grasped
by our embodied agent i.e. a 7DoF manipulator with a two-
finger gripper. We evaluate the agent on 60 representative
queries repeated 3 times (e.g., ’Check what is on the other
side of the soda can’) concerning different objects and tasks
in the scene. We perform experiments in a simulated and real
environment and report the success rate for various components
of the system. Our system achieves up to 80.6% success rate
on challenging scenes and queries. We also analyse and discuss
the challenges that such an intelligent embodied system faces.

I. INTRODUCTION

AI systems for reasoning about visual scenes and answering
nontrivial enquiries formulated in natural language have
recently demonstrated impressive results [1], [2], [3]. Em-
bodied scene reasoning capable of executing actions on
real objects requires many components from the analysis
of visual input to the hardware that performs actions in
response to natural language queries. Much progress has also
been made in the fields that focus on individual components
such as visual recognition [4], 3D scene modelling [5],
[6], NLP systems [7], [8], grasp prediction [9], action and
motion planning [1], [10], modelling physical properties of
objects [11] and their manipulation [12]. Apart from simu-
lated environments [13], [14], there have been few studies
integrating these components into a complete system with
robotic hardware that would allow to identify the remaining
bottlenecks.
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(a) Real scene setup. (b) Scene in Blender. (c) Scene in MuJoCo.

Fig. 1: Example scene based on real robot setup. Images
include the view of the real scene: (a) rendered in Blender
(b), and the corresponding setup in MuJoCo simulator (c).

In this paper, we propose a system that integrates a
reasoning apparatus with an embodied agent in simulated
and real environments. It is capable of understanding human
formulated tasks, disambiguating scene objects, planning
actions and motions, manipulating real objects, as well as
measuring their physical properties (e.g., weight, stiffness).

With the proposed system, we address a number of impor-
tant design questions for implementing an embodied agent.
In particular, the reasoning system (see V2A model in Fig. 3)
integrates components that are trained from existing datasets
[15] or generated by simulators [16], which allow the system
to generalise to new environments (including all test scenes
used in our experiments). Our approach segments a long-term
goal into atomic action sequences, which can be executed
by a robot to acquire information about the environment
via object manipulation. In this way, the embodied agent
can improve its model of the environment and subsequently
improve planning and execution of more complex tasks.
The loop is closed by an action feedback and knowledge
fusion pipeline that accumulates the knowledge for further,
more efficient manipulations. In this work, we focus on one
direction of the interaction: from visual input, over reasoning,
to manipulation actions refining current knowledge. A closed
loop triggering reasoning iterations remains a future work.

During object manipulation, humans acquire knowledge
about the object properties like mass and stiffness on the
fly. We propose suitable representations for objects, scenes,
actions, and perceptions to foster successful execution and
scalable knowledge acquisition. We select the necessary
components and interfaces that facilitate the interplay be-
tween high-level action reasoning and low-level control
schemes such as open-loop execution with sanity checks.
We also address the robot/embodiment requirements which
are hardware specific (e.g., workspace, kinematics, gripper
collisions, etc.).

Finally, we evaluate the success of reasoning, motion
planning, and execution of the system components on a set



of complex tasks (e.g., “stack the yellow bowl behind the
glass on top of the small plastic object that is on the right of
the big container.”). In particular. We measure the success of
completing the tasks and discuss the reasons for failures that
originate from different components. We report how often
and why action executions fail when performed by a real
or simulated agent. We discuss the assumptions required for
successful execution and how the success rate is affected by
uncertainty in the scene representation.

In summary, we make the following contributions:
• We build an embodied reasoning agent, trained from

synthetic data, but capable of generalizing to different
tasks, objects and scenes.

• We propose a system for exploring object properties that
require manipulation.

• We propose an evaluation framework, report the success
rates for critical components, and identify weaknesses
of the embodied agent.

We provide the source code for robotic actions, scene and
object descriptions, generated action sequences, and other
supporting material (http://imitrob.ciirc.cvut.cz/EQA.html)
that can form a benchmark for similar systems.

II. RELATED WORK

There has been an increased interest at the intersection of
robotics, computer vision, and natural language processing.
There are many research activities in various areas including
the direction of information (unidirectional, for example,
from human to robot [17], [18], or bidirectional [19]), the
purpose of linguistic interaction (e.g., to provide instructions
[17], [20], [21], [22], [18], explanations [23], or obtain
further information [1], [2], [3]), the degree of embodiment
(from virtual agents [1], [2], [3] to real robots [17]), as
well as the complexity of the language used (from simple
utterances, to complex constructs), which dictates the level
of reasoning that the listener has to perform to understand
the linguistic construct. To facilitate research in these areas, a
range of related datasets have been created, including SHOP-
VRB [16], ALFRED [14], EQA [2], and R2R [24].

Fewer studies focused on building a complete system that
can understand and execute human queries which require
manipulation of real objects. Simulated environments [13],
[14] are convenient and efficient for performing experiments,
but cannot capture all the possible challenges that working
with the real hardware poses. We extensively use synthetic
data to train the components of the reasoning system [1] and
evaluate it in new virtual and real scenes. We advance the
state-of-the-art in this area by integrating various components
together. This allows to evaluate their performance and
readiness for deployment in an embodied reasoning system.

III. EMBODIED REASONING SYSTEM

In this section we present our embodied reasoning system:
the scenes and objects used to perform the experiments, the
reasoning module, action primitives, and their parameters.
More complex tasks are discussed at the end. Figure 2 shows

Fig. 2: The main components and information flow in the em-
bodied reasoning system. Blue boxes are system components,
dark grey boxes mark input data, blue arrows show data
flow (with light grey boxes showing the data type). Dashed
arrows mark information links which are established, but
the receiving component operates independent of the data.
This is due to the fact that the query is finished when the
measurement data arrives.

the main system components and the information flow be-
tween them. Visual scenes and queries formulated in natural
language are the inputs to the Vision to Action module [1].
It generates the scene and object description together with
the sequence of actions that should be executed to answer
the query. These are passed to the planning and execution
module that uses MoveIt! [25] to plan individual actions
with collision avoidance. The actions are then executed in a
simulation environment or on the real robot. The execution
module reports the measurements and action feedback to the
reasoning module.

A. Synthetic Scenes and Questions

We adapt the methods from SHOP-VRB [16] and V2A
[1] to generate randomised scenes and questions for the
experiment, making the following adjustments to match real
and simulated scenes. The base of the scene is changed to a
table and the model of Kinova Gen3 robotic arm is added.
Additionally, camera parameters (position, orientation and
field of view) in Blender [26] are adjusted to resemble the
real configuration (see Fig. 1). Scenes with random objects
are then generated. We use the set of objects that are present
in both SHOP-VRB and YCB dataset and adjust the synthetic
objects (materials, colours) to resemble the YCB objects. The
following items were used to generate the scenes: bowl, fork,
glass, knife, mug, pan, plate, scissors, soda can, spoon, and
wine glass. For the experiment with the real setup, we use
the scene containing all the objects with an extra soda can
in a different colour shown in Fig. 1(b). The questions were
generated via V2A [1] generator filtering only those with a
valid answer.

B. Vision to Action Reasoning

Our approach to reasoning builds on the V2A model [1],
presented in Fig. 3 and consists of three main components:
scene segmentation, attributes extraction, and multi-modal
reasoning on both instructions and scene representations.
Scene segmentation is performed using Mask R-CNN [4],
which predicts the segmentation mask and category of each
object in the scene. Thereafter, masked images of objects
are passed to ResNet-34 [27] responsible for extracting the

http://imitrob.ciirc.cvut.cz/EQA.html


Fig. 3: V2A model used for the visual and NLP reasoning.

TABLE I: Subset of primitive actions chosen from V2A.

Command Functioning

avoid:IDX Avoid object IDX during next move.
move:IDX Move gripper over the object IDX.
move:DIR Move effector in cardinal direction DIR.
approach grasp:IDX Approach grasping position to object IDX.
grasp:IDX Close the gripper (called after approach grasp).
release Release object from the gripper.
measure weight Measure weight of the object in the gripper.
measure stiffness Measure stiffness of the object in the gripper.
shake Shake the object in the gripper.
rotate Rotate the object in the gripper (around z axis).
flip Flip the object in the gripper upside down.

attributes of the given items, providing a disentangled repre-
sentation for the properties of the objects. Action sequence
prediction is based on Seq2seq machine translation [28].
The instruction and the sequence of object attributes are
encoded to a latent space with a LSTM [29] network. As
in V2A, a multi-modal attention module is then applied to
outputs of both encoders. Finally, given the attention map,
the sequence of primitive actions is predicted using an LSTM
decoder initialised with the hidden state of both encoders
(concatenated). The list of primitive actions is presented in
Table I. V2A model is fully trained on the dataset from [1]
and is not further tuned for the scenes used in this work.

C. Actions and their Parameters

The primitive actions enable to operate the robot relative to
objects in the scene, the current pose, and approach an object
for grasping or other measurement actions. Most primitive
actions (see Table I) are parameterized for the actual scene.

Below we provide details for selected actions from Table I.
1) Move: moving the end-effector above the object spec-

ified by the parameter IDX. Motions are checked against
collisions with objects specified by the avoid primitive.
Factors affecting outcome: Object can be placed out of reach
or other scene objects obstruct the motion.

2) Grasp: Grasping is achieved by the combination of
the primitives approach grasp and grasp. The first moves the
end-effector in a Cartesian motion from the current pose into
one of the pre-defined grasp poses (all options are tried until
a feasible motion plan is found). The grasp action closes
the gripper and monitors the gripper forces and motion to
infer if the action was successful. Factors affecting outcome:
Errors in the estimated object pose can lead to a collision
between the gripper and the object or to unstable grasps.
Other objects can block the approach, such that no motion
plan can be found. When using a trained model for grasp
selection (e.g., [30]), failures can be induced by bad choices.

3) Measure weight: With the object grasped, the robot
moves to a specific joint configuration in which the object’s
weight projects into specific robot axes due to gravity. The
torques are measured and compared with the readings when

no object is lifted and the difference together with the lever
arm length can be used to compute the object mass. Factors
affecting outcome: The skill depends on the knowledge of the
lever arm and the torque without payload τ0. The lever arm
depends on the grasp pose and thus can affect the estimated
mass. τ0 depends on the mass distribution in the measuring
pose, but might be affected by friction and slack in the joints.

4) Measure stiffness: Close the gripper until in contact
with the object. Then press with higher force and record the
achieved deformation. Factors affecting outcome: Each grip-
per and robot have different sensory feedback. Some form
of force / tactile feedback is necessary and the procedure
needs to be calibrated for the current hardware. Relative
ordering by stiffness is feasible. Measuring absolute physical
quantities (stiffness / elasticity) needs a calibrated gripper.

D. Execution of Action Sequences

Fig. 4 shows the execution pipeline, its inputs (action
sequence, scene and object descriptions), and its outputs
(robotic execution, measurement results, and success re-
ports). Each action of the sequence corresponds to a small
robot program that is parametrized by the pipeline input
(i.e., parameters and scene/object descriptions). We generate
executable Python code from the action templates, which
(i) implements the robot action (utilizing the manipulator,
the gripper, and cameras), and (ii) collects and evaluates
the sensor data to report the actions’ results and detect
possible failures. The real and simulated hardware can be
used interchangeably thanks to compatible interfaces.

Action sequence
move::2
approach_grasp::2
grasp::2
move::up
move::3
move_down::3::2
release
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 Plan individual actions
with collision avoidance
(MoveIt!)

Execute in
simulation (MuJoCo)

Execute in
reality

Objects
description

MA.move_above(objects[2])
MA.approach_grasp(objects[2])
MA.grasp(objects[2])
MA.move_up()

Sequence of primitive robotic actions
MA.move_above(objects[3])
MA.stack(objects[3],objects[2]) 
MA.release()

Fig. 4: Executing action sequence from V2A with simulated
or real robotic arm.

IV. EXPERIMENTAL SETUP

We evaluate the individual modules as well as the complete
system in simulation and real experiments. First, we elabo-
rate the simulated and the real robot setup Then, details about
the conducted experiments are given Lastly, the evaluation
metrics are defined.

A. Real Robot Setup

The real robot setup is illustrated in Fig. 1(a). It consists of a
Kinova Gen3 robot manipulator (7 DoF) with a Robotiq 2F-
85 gripper on a table. The robot has joint torque sensors in
every axis that are exploited to estimate the mass of objects



TABLE II: Benchmarking tasks used in experiments.

# Task

1 Pick the OBJ up.
2 Pick the OBJ and move it to the DIR.
3 Pick the OBJ1 and move it over OBJ2.
4 Measure weight of the OBJ.
5 Measure stiffness of the OBJ.
6 Empty OBJ (pick it up and flip upside down).
7 Check what is on the other side of the OBJ (pick up and rotate).
8 Shake the OBJ to check if there are any moving parts.
9 Put OBJ1 in the OBJ2.
10 Stack OBJ1 on top of OBJ2.

the robot is lifting. The gripper is equipped with position
feedback (gripper aperture) and motor current feedback,
which enables to estimate the object stiffness. Two RGB-D
cameras (Intel Realsense D435) are mounted on the opposite
side of the table viewing the scene.

B. Simulation Setup

The simulation environment consists of two parts: we simu-
late the robot, the scene objects, and their physical interaction
using MuJoCo [31]. The 3D rendering software Blender [26]
is used to create photo-realistic images from the scene as seen
from the viewports of two Intel Realsense D435 cameras (see
Fig. 1(a)) in the setup.

The MuJoCo simulation model is specified as Universal
Robot Description Format (URDF), which allows to describe
kinematic structure composed of rigid bodies (links) and their
kinematic constraints (joints). The robot model (including the
gripper and the table) is equivalent with the configuration of
the real robot. The objects are connected to the world frame
via floating joints, which do not restrict the object’s motions.

The robot is controlled by a ROS-Control [32] effort con-
troller with a custom hardware interface. We tuned the PID
controller parameters to allow position control of the robot
and joint trajectory control. The latter is exposed as joint
trajectory action, which allows us to control the simulated
robot using the MoveIt! motion planning framework [25].

The state of the objects in the MuJoCo environment is
determined by the physical simulation taking into account the
contact states, the resulting forces, the object geometry, and
the mass properties of the objects. For a stable simulation,
we had to simplify and clean the meshes (e.g., approximation
by convex decomposition). For details, see our website.

C. Visual Reasoning Experiments

We generated artificial test data (i.e., 1000 new questions
with balanced distribution of tasks according to Tab. II)
for the scene shown in Fig. 2 (example of the generated
sequence is in Fig. 4) and tested the performance of the V2A
method [1] (see Fig. 3). We then replicated the scene with the
real robot and recorded images with the real cameras. Both
experiments were conducted with the ground truth scene data
as the input for the reasoning system, and using the full
pipeline including the segmentation and attribute extraction
modules.

D. Real-Robot Experiments

For evaluation of the system with the real robot, for each
scene we selected 50 action assessed as correct by the V2A
system. We tested our system on two different scenes to
evaluate its robustness with respect to the experimental setup
(see our website http://imitrob.ciirc.cvut.cz/EQA.html for
the Scene 1 input data). We tested each action sequence
for feasibility by a teleoperated execution. Then we let
our system plan and execute the action sequences 3 times
automatically. This resulted in 50x3 executions for Scene 1,
and 10x3 executions for Scene 2. An example of a successful
execution can be seen in Fig. 5.

E. Evaluation Metrics

We report global success rates and analyse specific failure
modes for the experiments with the real setup. We report the
overall success rate for all executed 180 action sequences as
well as the success rates of the system components (V2A,
planning, execution). We analyse individual action sequence
executions with respect to various reasons for failure:

1) Collisions: We consider 4 types of collisions: 1) Un-
wanted collision with the target object during grasp ap-
proach (due to inaccurate pose estimation). 2) Collisions with
neighbouring objects during pick up actions occur due to
orientation changes of the grasped object when the gripper
closes. Then a collision may not be detected, but it can be
acceptable as nothing can be clamped during a pure upward
motion. We utilise bounding boxes as collision bodies. In
the simulation, collisions checks with the object are disabled
during grasping. 3) Grasping positions may be obstructed by
other objects. Our teleoperation serves as a test that all our
sequences are possible to execute without such collisions.
4) Other types of collisions occur between robot and objects
(e.g., collision of the object attached to the gripper with other
objects during general movement).

2) Grasping: Objects are not properly grasped and slide
out of the gripper during execution.

3) Action outcome not fulfilling the purpose: The action
execution was completed without failures, but the intended
result was not achieved. For example, the information on
the hidden side of an object is not visible after rotating
the object; or, stacked objects do not stay on top of each
other. Sometimes, the action achieves the correct result, but
the action execution violated common sense expectations—
e.g., releasing an object too high above the container and
thus dropping it instead of placing it carefully. Possibly, the
reasoning could give some information about the purpose of
the action. Establishing a feedback loop can help to increase
the chance of success.

4) Measuring error: For measuring actions such as
weighing and stiffness measurement, the final value may not
correspond to the real object property. This may be result
from wrong execution of the action or other effects (e.g.,
object grasped on the side instead of the centre).

http://imitrob.ciirc.cvut.cz/EQA.html


(a) move::7 (b) approach::7 (c) grasp::7 (d) move::up (e) move::0 (f) down::0::7 (g) release

Fig. 5: Example of executing action sequence for ”Could you put the small blue portable object inside the medium-sized
red ceramic irregularly shaped thing, please?” For more examples, see the accompanying video and our website.

TABLE III: Results of visual reasoning and action planning.
GT and EVAL refer to the use of either ground truth or in-
ferred attributes, respectively. We consider instructions with
valid action sequence and compare them to the simulated
scenes as well as to the real photos of the real scene.

Data Attributes Success rate [%]

V2A [1] - valid GT 24.9
V2A [1] - valid EVAL 23.8
Real setup sim GT 26.7
Real setup sim EVAL 25.1
Real photos EVAL 17.4

V. EXPERIMENTS AND RESULTS

We present the results achieved for individual modules of
our system as well as overall success rate of execution. We
also provide a discussion on different failure types.

A. Visual Reasoning and Action Planning

The results for reasoning and action planning are presented
in Table III. As we generated only instructions that have
a valid action sequence as possible output, we consider
only the valid part of the original V2A for comparison. We
observe that with the new simulated scene, the results are
comparable to V2A results from [1]. A slight improvement
may be due to the reduced set of viable tasks, which would
otherwise decrease the score. We notice a 30% decrease in
performance when using real photo as the input. It is mainly
the result of degraded Mask R-CNN performance due to lack
of training on the real scenes. From the predictions we have
observed that the cutlery was often missed by the detector.
Similarly, the background clutter posed a challenge to the
segmentation network. The second contribution to the error is
the performance of the attribute extraction network. However,
as questions are posed using only selected attributes, misclas-
sifications of attributes did not have a significant impact on
the full pipeline performance.

B. Evaluation of Measuring Actions

We performed qualitative and quantitative evaluation to show
the dependency of individual actions on the experimental
setup or the object pose.

1) Mass: We measured ten times the mass of a full and an
empty soda can. The full and empty soda can were estimated
to have a mass of 352 ± 4 g and 34 ± 12 g, respectively
(355 g vs. 14 actual mass – reference). The variance in the
weight measurements is correlated with the position of the
can in the gripper (see Fig. 6), as the lever l is a divisor
in the weight calculation m = (τ0 − τ)/(l ∗g). Another, less
obvious, influence has the joint temperature. We observed

Fig. 6: The result and the perception
of an embodied action depends on
the hardware and the spatial config-
uration. The result of the weighing
action for the shown object poses
differ by 15 % relative to the nomi-
nal weight.

TABLE IV: Measure stiffness for different objects and
grasps. The grasp types: YCB: full (1) vs. half (2) surface
in contact with the gripper; Plastic cup: outside grasp (1) vs.
around side (2); Can: Top (1) and middle (2) grasp.

Grasp Can (empty) Can (full) YCB block Plastic cup

1 0.7±0.2 0.52±0.32 3.64±0.34 1.9±1.1
2 1.8±3.8 0.65±0.52 4.78±0.66 0.7±0.7

τ25
0 to be 9.3017Nm and at constant operation temperature

of 39.8degC τ39.8
0 = 9.558Nm. This difference itself would

account for a difference of 83 g in the estimated weight.
2) Stiffness: We executed sequences of 10 consecutive

measurements with 6% and 40% maximum force on an
empty can, a full can, the YCB rubber block, and a plastic
cup. On each object, we selected two different grasps to
apply the pressure (see Fig. 7). The results are presented in
Table IV. For objects with sufficient elasticity (e.g., the YCB
block and the plastic cup) the method returns reliable values
with a small standard deviation. In the case of the empty
can, we observed a significant deformation in the first trial
(13%), but nearly no deformation in the subsequent ones
due to plastic deformation. The perceived deformation is
strongly dependent on the actual grasp, the object geometry,
and distribution of material properties. Together, these factors
determine the deformation modes and amount for given
forces applied by the gripper (see Fig. 7 for different situa-
tions/grasps on the YCB block and a plastic cup). However,
the perceived deformations are still suitable to classify the
objects as soft or hard.

C. Motion Planning and Robot Execution

All the selected action sequences were tested for feasibility
and executability (e.g., executable without collisions) by a

(a) (b) (c) (d)

Fig. 7: Stiffness measurement depends on several factors
such as grasp position (a,b) or grasp type (c,d).



Fig. 8: Distribution of experiment results for Scene 1 (150
sequence, including 33 measuring sequences) and Scene
2 (30 sequences). We differentiate between failure due to
grasping and failure where the outcome is not matching
the expectations. Successful executions are divided to full
success and success with tolerable collisions.

teleoperation test—a human operator commanded the robot
to perform the given action.

For all primitive actions apart from approach grasp and
grasp, we were able to always find collision-free motion
plans. Collision-free grasp approaches were found for 9 out
of 11 objects. The results for all real robot executions are
shown in Fig. 8. We observed similar failure distribution
over all the executions in both scenes. For Scene 1 (with 50
action sequences repeated 3 times), 80.6% of the executions
were successful. Out of these, 71.3% were fully successful
and in 9.3%, tolerable collisions occurred (e.g., touching
neighbouring objects while moving up). In 6% of the cases,
the action sequence was completed without errors, but the
outcome did not match the action purpose. Failures due to
wrong grasping or crashing objects happened in 13.3% of
the executions. For Scene 2 with 10 action sequences (again
repeated 3 times), we achieved similar results—full success
in 60%, success with tolerable collisions 23.3%, and failure
due to wrong grasping in 16.7%.

The outcome of the action did not match its purpose in
the following cases: 1) action rotate: for 1 of 3 objects,
the object was rotated outside of the camera field of view,
making the label unreadable. 2) action stack: in 5 out of 10
action sequences executions, the object was not standing on
top of the object to be placed. Sometimes, we observed action
sequences, where the action’s final outcome was matching
(i.e. the object was on/in the other object), but the execution
violated the common sense of how the action should be
performed (e.g., action stack let the object fall in 33%, action
flip spilled in 20% of cases the content over the robot).

Grasping failures (e.g., the object falls out of the gripper)
were observed mainly during the manipulation of the knife
(50% of cases) and the scissors (66% of cases). Grasping of
the other objects did not work all the time, but these errors
were already counted as collisions during the grasp approach.
Tolerable collisions were observed for e.g., grasping a mug
(touching the wine glass) and grasping the blue can (touching
bowl). Furthermore, we observed collisions when lifting the
scissors or cutlery up, because the orientation in the gripper
of these objects slightly changed during grasping.

Sliding motions of the knife in the gripper and changes
in the scissors’ opening angle led to too low stiffness clas-
sifications for these objects. Weighing showed a measuring
error of more than 50% with high standard deviation for the
empty can, which was caused by the weak signal to noise

ratio for weighing a 13g light object with an approximately
10kg heavy machine.

VI. CONCLUSIONS

We proposed an embodied reasoning system capable of
planning and executing action sequences to answer complex
queries formulated in natural language. Our system can be
extended to disambiguate abstract instructions such as Give
me the full bottle, please! or Give me the softest object which
may require sequential exploratory acting to enable further
reasoning as inferring a definite set of actions may not be
possible from the initial knowledge and state of the scene.
For example, to disambiguate a question related to fullness,
the system will need to sequentially pick up and measure the
weight of all bottles until a full bottle is found. To propose
appropriate actions that can answer such query, linguistic
constructs (e.g., full, soft, heavy, etc.) need to be associated
to the type of actions that can provide the necessary sensory
data. If the instructions involve ambiguous targets (i.e. sev-
eral objects can be referenced), the system should be able to
produce an action sequence that can acquire a differentiating
piece of information (e.g., the weight of all bottles). A set
of required sensor readings can be obtained by interacting
with the environment. The planning system can then update
its knowledge base and either answer the original query or
issue more intermediate goals. We demonstrated that such
systems can be integrated from various components such as
scene parsing, natural language processing, reasoning, action
planning with collision avoidance, simulation as well as real
hardware execution. In addition, we provide an analysis and
make a number of observations concerning the integration of
the simulated and real environments that will facilitate the
development of an improved intelligent robotic platform.

The success rate of completing the action sequences and
providing answers to the queries is up to 80.6% which we
consider very high given the complexity of the tasks. There
are still many subtle challenges that compromise the quality
of result and more engineering is needed on the level of
action primitives and their parametrization to achieve ro-
bustness. Presented success rates emphasise the difficulties in
predicting a whole sequence of actions. Incorrect predictions
arise from the challenging task of identifying which item
is the subject of the consecutive actions. Nonetheless, we
believe that our datasets, the processing pipeline and the
evaluation framework can serve as a reference point for
future evaluations of such embodied reasoning systems.
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